

Wright-Patterson Air Force Base, Ohio
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

USING SEQUENCE ANALYSIS TO PERFORM

APPLICATION-BASED ANOMALY DETECTION
WITHIN AN ARTIFICIAL IMMUNE SYSTEM

FRAMEWORK

THESIS

Larissa A O’Brien, First Lieutenant, USAF
AFIT/GCS/ENG/03-15

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

AFIT/GCS/ENG/03-15

ii

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense or United States

Government.

AFIT/GCS/ENG/03-15

iii

USING SEQUENCE ANALYSIS TO PERFORM

APPLICATION-BASED ANOMALY DETECTION

WITHIN AN ARTIFICIAL IMMUNE SYSTEM FRAMEWORK

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science (Computer Science)

Larissa A. O’Brien, B.A.

First Lieutenant, USAF

March 2003

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

v

TABLE OF CONTENTS

TABLE OF CONTENTS ...v
LIST OF FIGURES ...vii
LIST OF TABLES ..viii
ABSTRACT .. ix
1. Introduction.. 1

1.1 Overview of Threat... 1
1.2 Overview of IDSs.. 2
1.3 Research Focus.. 2
1.3.1 Scope... 3
1.3.2 Hypothesis .. 3
1.3.3 Objectives ... 3
1.3.4 Approach.. 5
1.3.5 Assumptions... 6
1.4 Document Overview... 7

2. Background and Literature Review... 8
2.1 Introduction.. 8
2.2 Intrusion Detection Systems.. 8
2.3 Evolutionary Algorithms (EAs): .. 10
2.3.1 GAs.. 11
2.3.2 GP .. 12
2.3.3 Artificial Immune Systems .. 13
2.4 Types of Vulnerabilities... 14
2.5 Types of Attacks.. 17
2.5.1 Effect of Intrusions... 20
2.6 Methods of Monitoring Event Relationships... 22
2.6.1 Path Profiling ... 22
2.6.2 Temporal Signatures... 23
2.6.3 Embedded Sensor Protection (ESP)... 23
2.7 Generating Anomalies .. 24
2.8 Summary ... 26

3. High-Level Design.. 27
3.1 Introduction.. 27
3.2 Overview of Objectives.. 27
3.2.1 Desired Characteristics of System.. 28
3.3 High-Level Design.. 29
3.3.1 Pseudocode for Overall Structure... 29
3.3.2 Design of Program.. 30
3.3.2.1 Chromosome Generation ... 31
3.3.2.2 Operators and Operands... 32

vi

3.3.2.3 Training... 38
3.3.2.4 Quasi-GP Engine... 40
Deployment ... 41
Feedback loop ... 41
3.3.3 Design of Training and Test Sets ... 41
3.4 Summary ... 44

4. Low-Level Design and Implementation.. 46
4.1 Introduction.. 46
4.2 Implementation/Problem Solving... 46
4.2.1 Implementation Details .. 46
4.2.2 GP Terminals ... 46
4.2.3 Chromosome Generation ... 48
4.2.4 Training... 49
4.2.5 Quasi-GP Engine... 50
4.2.5.1 Selection ... 50
4.2.5.2 Crossover.. 51
4.2.5.3 Point Mutations... 51
4.2.5.4 Fitness Function.. 52
4.2.6 Deployment.. 52
4.2.7 Feedback Loop .. 52
4.2.8 Design of Training and Test Sets ... 53
4.3 Difference Analysis .. 56
4.4 Summary ... 58

5. Test Cases and Results ... 59
5.1 Introduction.. 59
5.2 Design of Experiments ... 59
5.2.1 System Boundaries.. 60
5.2.2 System Services... 60
5.2.3 Performance Metrics... 60
5.2.4 System Parameters .. 61
5.2.5 Workload .. 61
5.2.6 Factors... 62
5.2.7 Experimental Design .. 65
5.3 Summary ... 73

6. Conclusions and Recommendations.. 74
6.1 Introduction.. 74
6.2 Research Impact .. 74
6.3 Recommendations for Future Work... 75
6.4 Summary ... 78

Appendix: Sample Regular Expression, Fully Enumerated.. 79
BIBLIOGRAPHY.. 84

vii

LIST OF FIGURES

Figure 1. A Modified Subset of the AIS Cycle ... 30
Figure 2. Number of Alerts produced for Normal and Anomalous Logs, No Feedback................................... 68
Figure 3. Number of Alerts produced for Normal and Differently Modified Logs, No Feedback.................. 68
Figure 4. Means with 90% Confidence Intervals (No Feedback) ... 69
Figure 5. Means with 90% Confidence Intervals (with Feedback) ... 70
Figure 6. Control Results: Percentage vs. CDP for FP and FN ... 71
Figure 7. Control Results – Detail .. 71
Figure 8. Limited Feedback Results: Percentage vs. CDP for FP and FN ... 72
Figure 9. Percentage vs. CDP for FP and FN with (F) and without (NF) Feedback... 72

viii

LIST OF TABLES

Table 1. Minutes to Develop Antibodies... 64
Table 2. Regular Expressions with Number of Strings Produced.. 65
Table 3. Mean Number of Alerts (Standard Deviation) without Feedback... 66
Table 4. Mean Number of Alerts (Standard Deviation) with Feedback... 67

ix

ABSTRACT

The Air Force and other Department of Defense (DoD) computer systems

typically rely on traditional signature-based network IDSs to detect various types of

attempted or successful attacks. Signature-based methods are limited to detecting known

attacks or similar variants; anomaly-based systems, by contrast, alert on behaviors

previously unseen. The development of an effective anomaly-detecting, application-

based IDS would increase the Air Force’s ability to ward off attacks that are not detected

by signature-based network IDSs, thus strengthening the layered defenses necessary to

acquire and maintain safe, secure communication capability.

This system follows the Artificial Immune System (AIS) framework, which relies

on a sense of “self,” or normal system states to determine potentially dangerous

abnormalities (“non-self”). A method for anomaly detection is introduced in which

“self” is defined by sequences of events that define an application’s execution path. A set

of antibodies that act as sequence “detectors” are developed and used to attempt to

identify modified data within a synthetic test set.

1

USING SEQUENCE ANALYSIS TO PERFORM
APPLICATION-BASED ANOMALY DETECTION

WITHIN AN ARTIFICIAL IMMUNE SYSTEM FRAMEWORK

1. Introduction

The Air Force and other Department of Defense (DoD) computer systems typically rely

on traditional signature-based network IDSs to detect various types of attempted or

successful attacks. Information protection is a great concern of the DoD; even though no

classified data is supposed to be kept on computers connected to the internet, penetration

of an unclassified system could result in the compromise of sensitive data that could be

used to negatively impact DoD personnel and resources. With applications such as the

Air Force Portal making it possible to consolidate data from varied sources, the defensive

information warrior must also consider the possibility of data aggregation leading to the

presence of classified content on an inadequately protected, publicly reachable system.

The development of an effective application-based IDS would increase the Air Force’s

ability to ward off attacks that are not detected by signature-based network IDSs. This

increased ability would strengthen the layered defenses necessary to acquire and maintain

safe, secure communication capability.

1.1 Overview of Threat

An intrusion can be defined as “any set of actions that attempt to compromise the

integrity, confidentiality, or availability of a resource.” [Head90] An attacker attempts to

subvert system security to gain access to information, alter information, or deny use of

2

the system to other users [Cros95a]. Most exploits used by attackers take advantage of a

fault or vulnerability that is known to be present in a target system.

1.2 Overview of IDSs

An intrusion detection system (IDS) can be a valuable contributor to the defense of

a computer system. The term “intrusion detection” is something of a misnomer; the term

is not appropriately descriptive. The purpose of an IDS is to detect behavior that could

result in inappropriate access, modification, or destruction of system resources. A pure

IDS is a reactive form of defense; it does not attempt to stop an intrusion, merely creates

an alert that can be investigated by an analyst.

1.3 Research Focus

This thesis investigation appropriates methodologies for application-based anomaly

detection using event sequence pattern detection. Most intrusion detection systems (IDSs)

currently in use utilize signature-based methods that are limited to detecting known

attacks or similar variants. Anomaly-based systems, by contrast, alert on behaviors

previously unseen. The system follows the Artificial Immune System (AIS) framework,

which relies on a sense of “self,” or normal system states, to determine potentially

dangerous abnormalities (“non-self”). The majority of research on anomaly-based

intrusion detection has involved network-based IDSs. The incidence of attacks wherein

the attacker disguises an attack to subvert a network-based IDS is on the increase. As

part of a defense-in-depth approach, it is important to develop models that perform

3

anomaly-based intrusion detection at the application level. An application-based system

offers the advantages of being able to be tailored to the limited set of execution paths that

can occur. This research is accomplished by simulating the output of an application that

has been instrumented with code that documents the order of a series of “events.”

Antibodies are developed to use the sensor information as inputs to characterize both the

“normal” process execution and abnormal execution (as from attacks/exploits).

1.3.1 Scope

Application-based intrusion detection is necessarily limited to analyzing data from input

to the application and any events that occur as a result of the input. This research focuses

primarily on normalcy and anomaly of execution paths, although the model presented is

extensible to other monitorable event sequences.

1.3.2 Hypothesis

The hypothesis is that event sequence descriptors can be used to detect anomalies in

application paths using genetic programming techniques within an Artificial Immune

System framework.

1.3.3 Objectives

The primary objective of this study is to develop an IDS for abnormal process execution

that can effectively differentiate between normal and anomalous sequences (ordered sets)

4

of events. The sequence may be interrupted by irrelevant events, and the logic behind the

ordering is not known a priori.

This objective is multipart:

It is necessary to define a set of operators that is adequate to characterize the

relationships among a set of events that occur during process execution.

Objective I: Identify and implement any operators necessary to describe temporal

relationships among relevant events

These relationships may be of varying complexity. In one case, the occurrence or

disappearance of a single event may be enough to characterize the effects of an intrusion;

in another, a set of relations may need to exist where any one of them in isolation would

be within the set of normalcy. Therefore, once a set of operators is defined, a plausible

technique for combining them so as to be able to characterize more complex effects must

be determined.

Objective II: Determine an appropriate method of producing descriptors for

event sequences of varying complexity

Once the descriptors have been produced, a process is needed to categorize the

descriptor as describing a normal sequence or an anomalous one.

Objective III: Determine an appropriate method of classifying these relationships

as “normal” or “anomalous”

5

Intrusion detection is often considered in isolation from the actions that must be

taken subsequent to detection. Once an intrusion has occurred, there is a limited amount

of data available from which a human analyst must draw conclusions. A problem

inherent to anomaly-based ID is that it is difficult or impossible to differentiate between

benign and malignant anomalies. This analytical step generally must be perfo rmed by

human analysts post-mortem, and is both time-consuming and tedious.

Objective IV: Determine a method to extract and consolidate data that may assist

human analysts in locating the point at which an anomaly occurs.

1.3.4 Approach

A set of software “sensors” can be placed within the code of an open-source

application. Each “canary” sensor is designed to issue an “alert” when the section of

code in which it is embedded is reached, thus locating the point in the program flow. A

sequential log represents the order of triggered sensors as a one-dimensional array of size

m where log entry[m] represents the mth sensor to trigger. The assumption is that a

sufficient number of sensors placed at selected locations can provide enough information

for an analyst to detect inappropriate activity by performing temporal analysis on the

output. This research assumes the pre-placement of sensors and the existence of an

output log (an appropriate method of simulating these logs is described in Chapter 3). A

set of “self” (normal) logs are used to train the system using the principle of negative

selection; from these logs, a genetic programming engine can fill an antibody database

consisting of non-self event sequence descriptions. These antibodies are then deployed

6

on a test set composed of both self and non-self (abnormal) logs, resulting in a

classification of each log. Analyst evaluation of the results creates a feedback loop to

update the antibodies. Potential system utility can be inferred based on the accuracy of

these results.

1.3.5 Assumptions

Several assumptions are:

1. It is assumed that each application contains an essential “skeleton” of events of

limited number, such that a basic “template” describing all possible sequences of

events can be characterized by a regular expression. The words produced when the

regular expression is fully enumerated compose the regular language of normal event

sequences.

2. It is assumed that exploitation of a system’s vulnerabilities involves abnormal use of

the system; therefore, security violations can be detected from abnormal patterns of

usage [Denn87].

3. It is assumed that certain categories of intrusion attacks result in a change from the

standard execution path(s) and/or affect the timing of progress through the path. This

assumption is further explained in Chapter 2. If assumptions 1 and 2 are accepted,

then it is realistic to assume that these intrusions should be detectable if a reliable way

of characterizing the patterns of events within the execution paths is determined.

7

4. It is assumed that a basically stable environment exists regarding the instrumented

application. This assumption is reasonable because a single application has a limited

set of appropriate inputs that results in the execution of a limited set of paths.

1.4 Document Overview

This chapter describes the motivation and primary objectives for this research: to

provide a “proof of concept” for an application-based IDS, using the AIS paradigm and

incorporating genetic programming techniques, that is capable of classifying event

sequences as normal or anomalous.

Chapter 2 describes essential background research and literature required to better

understand the problem and prior solution methods. Chapter 3 provides a high- level

overview of the methodology used in this research, while Chapter 4 discusses design and

implementation details. Chapter 5 describes experiment design and results. Chapter 6

summarizes major conclusions and provides a description of proposed future work.

8

2. Background and Literature Review

2.1 Introduction

 In this chapter, background material and relevant prior research that establish the

foundation for this thesis effort are presented. Section 2.2 discusses intrusion detection

systems. Section 2.3 discusses evolutionary algorithms (with emphasis on genetic

programming and artificial immune systems). Section 2.4 discusses system and

application vulnerabilities, while Section 2.5 discusses various types of attacks that are

enabled by these vulnerabilities. Presented in Section 2.6 are several interesting

analytical methods that can be used to monitor the effects of attacks. Section 2.7

describes a method for generating anomalies for system testing. A description is given of

each concept and how it relates to the thesis research.

2.2 Intrusion Detection Systems

In general, IDSs are of three types, network-based, host-based, and application-

based, and use one or both of two detection methods, signature and anomaly. Network-

based detection involves watching network traffic for patterns of suspicious activity.

Analysis may be performed for each host or at a centralized location that attempts to

correlate activity across the network. Host-based detection involves monitoring the

activities of users and/or processes on a single machine [Guns00]. Application-based

detection is a subset of host-based detection in that it involves monitoring processes at the

host level, but is considered a separate type because of the difference in focus. Signature

9

(or misuse) detection is a problem of matching patterns of activity, network or system-

level, against a database of known attacks. Any attacks with patterns that match those in

the database can be identified prior to reaching the host. Most IDSs deployed currently

are signature-based. Adversaries, knowing that signature-based IDSs are installed on

government networks, continue to develop and deploy new attacks that evade detection;

it is to detect these new attacks that anomaly-based IDSs are necessary. Anomaly

detection is subtler and requires an IDS to identify events or patterns of event occurrences

that are unprecedented in the system. Not all anomalies indicate intrusions, however;

some form of classification system is needed to attempt to differentiate between these

two sets.

Each type has certain inherent advantages and disadvantages. Both network and

host-based systems face the problem of balancing the amount of data gathered and

processed against desired speed. Network-based systems have the advantage of being

able to screen packets before they can do harm to the system. Host-based systems have

the advantage that they can detect inappropriate behaviors caused by exploits that have

been altered to evade network-based detection. Host-based systems also do not have the

problem that network-based systems do with encrypted packet content. If an attacker

attempts to use an attack with a specific signature that involves part of the packet header,

it may be more efficient to catch this attack at the network level, thus preventing it from

completing. However, this method is ineffective against attacks if the attacker alters the

code enough to destroy the signature, or disguises the signature through the use of

encryption or mutation engines. Also, a new attack, until it is analyzed, may have no

10

known signature, in which case the packets slip past the network-based IDS. At this

point, the only hope for the system is that the attack is caught by a host-based system.

Even the host-based system may fail to catch the attack if it designed only for misuse

detection and is not attempting to detect anomalous behavior. These examples illustrate

that a secure defense system may need to incorporate both types and methods of intrusion

detection.

Research Impact

This research is limited to anomaly-based, application-based intrusion detection. It is

important to have some sense of the limitations of this method. Ideally, such a system

would be paired with an efficient signature-based, network-based IDS that would serve to

identify the majority of attacks before they reached the host. The system would be

responsible for attacks that are undetectable by that layer of defense.

2.3 Evolutionary Algorithms (EAs):

Evolutionary Algorithms are stochastic search techniques that use computational models

of evolution [Heit00]. Stochastic searches are used in problem domains where the search

space is too large to cover deterministically. A stochastic search is not guaranteed to find

an optimal solution for a particular problem; however, a well-designed stochastic search

can often find satisficing solutions in reasonable time [Mich02]. Functions inspired by

biological genetics are used within an “artificial selection” framework that results in a

form of guided evolution. The term “genotype” is used in biology to refer to the genetic

material of an individual – its “blueprint” for construction; with EAs the genotype is the

11

software representation of an individual solution candidate. This is the level at which the

data structure can be manipulated by operators. The term “phenotype” is used to refer to

the functional interpretation or evaluation of an individual [Foge95]. The Subclasses of

EAs include genetic algorithms, genetic programming, evolutionary programming,

evolutionary strategies, and classifier systems; despite their differences in representation,

selection methods, and mutation operators, they are all related by the use of a model of

biological evolution [Heit00].

Research Impact

This concept is relevant because an anomaly-based IDS requires some method for

differentiating between self (appropriate use of an application) and non-self (attack). EA

techniques can be used to automatically define or refine a model of normal (or abnormal)

usage as well as to determine classification of unknown data.

2.3.1 GAs

Rather than explicitly creating a solution for a given task, the goal of the

programmer is to design a system that rewards fitness of solutions. These systems use

biologically inspired functions and artificial selection to “evolve” a solution to a

predetermined problem. The system generates an initial population of “chromosomes.”

In GAs, these chromosomes are fixed- length binary or character strings. With each

generation, each individual in the population is evaluated and assigned a fitness value

according to how well it accomplishes the task. Pairs of “parent” chromosomes are

selected from the population based on their fitness, and their genetic code is manipulated,

12

creating a new generation of chromosomes. This process continues until an adequate

solution to the problem is found. Generally, the manipulation operators used are

recombination (or crossover) and point mutation. [Heit00]

2.3.2 GP

Genetic Programming (GP) is similar to GA; however, in GP, the chromosomes are

composed of operators and operands (terminals) that usually represent a simple meta-

language tailored for a particular problem [Koza92]. GP uses recombination, and, to a

lesser degree than GAs, point mutation. The result of evolution in this case is a set of

programs that can be run within an interpretive system. GP solutions are not generally

fixed- length, and the chromosome is often represented as a tree. As a result, they are

more flexible in the range of their representations [Koza94]. Crosbie and Spafford have

done exploratory work with applying GP to intrusion detection; however, their agent-

based system relies on network data, not host-based data. [Cros95a, Cros95b, Cros95c]

Research Impact

The difference between GA and GP is critical to this research. IDS solutions utilizing a

GA-based search engine are generally limited to examining data within a fixed window

size proportional to the size of the GA chromosome. GP, with its function set and

differently sized representations, is much more amenable to being used to examine data

within a wide range of window sizes. This difference makes the GP search space larger,

but also makes the solutions potentially more descriptive and useful. For this research,

13

these benefits are used to both detect patterns over the course of an execution path and

provide data about the patterns to analysts for forensic purposes.

2.3.3 Artificial Immune Systems

Artificial Immune Systems (AISs) include any machine learning system that applies

biological immunology strategies to a problem. According to [Nune00], J. D. Farmer

was the first to incorporate aspects of the immune system model into artificial

intelligence techniques in his paper “The Immune System, Adaptation, and Machine

Learning;” however, Stephanie Forrest first demonstrated its applicability to anomaly

detection in IDSs. A biological immune system develops antibodies that are selected

based on their ability to distinguish between “self” (cells, molecules of the body) and

“non-self” (antigens - any foreign material). A computer intrusion detection system can

be designed after this model [Dasg98]. The system must be able to form descriptions of

“self” – normal events (system behavior, network traffic, etc) [Forr92]. A representation

of an event pattern corresponding to an antibody is generated and compared to the self

descriptions. If it matches, it is destroyed through Negative Selection; if it does not

match, it is a potential identifier of non-self events. Once enough of these antibodies are

generated, they are released into the system. If any antibodies find a match, it is

considered a non-self antigen of some sort and is flagged as a potential intrusion

[Forr97]. It can be seen that there are inherent limitations to AISs that are not present in

biological immune systems, the most important of which is the inability to exploit the

massive true parallelism available to autonomous antibodies within a living organism;

14

however, it is still a useful model for intrusion detection. One method used by Forrest

and Hofmeyr involved determining “normal” for UNIX processes was accomplished by

correlating system calls within a fixed-size time window [Forr96, Hofm98]. Research at

AFIT has also involved AISs, most notably the Computer Defense Immune System

(CDIS) [Will01], a descendant of the Computer Virus Immune System (CVIS) [Harm00].

CDIS uses antibodies to detect single packet attacks on a network, using a database of

known “normal” traffic to define self. CDIS also uses a distributed AIS architecture.

Research Impact

The AIS paradigm is used in this research by training the system on a set of “self” data

representing logs created as a result of normal application use. Testing is accomplished

by using a data set consisting of previously unseen normal logs as well as modified logs

representing non-self.

2.4 Types of Vulnerabilities

Aslam, Krsul and Spafford document a fault classification scheme for UNIX processes

based on faults detected using software engineering methods [Asla96]. The scheme

describes the following types of faults:

1. Boundary condition errors : These errors caused by inputs at the boundaries of

the acceptability range can be detected with test cases using Boundary Value

Analysis for functional testing of modules.

15

2. Input Validation Errors : These are errors caused as a result of a module failing

to validate input from another module or process. They can be detected with syntax

testing to validate format or path analysis to detect inappropriate execution paths

3. Access Validation Errors : These errors result from incorrectly specified

condition constructs. They can be detected with path analysis or Branch and

Relational Operator testing.

4. Failure to Handle Exceptional Condition Errors : These errors include

unanticipated return codes and failure events. They can be detected by path analysis

testing on critical sections of code.

5. Environment errors : These errors are more difficult to define and test, as they are

dependent on idiosyncrasies specific to a particular machine, OS, or configuration.

Mutation testing has been successfully applied to detect some of these problems.

6. Synchronization Errors : These errors result from improperly timed operation in

the when a specific temporal relation is critical.

7. Configuration Errors : These are faults introduced after the software has been

developed, during the maintenance phase. Static audit tools are of some use in

detecting these errors.

The Fault Classification Scheme is as follows [Asla96]:

1. Coding faults

Definition: faults that were introduced during software development

a. Synchronization errors

16

Definition: a fault resulting from an exploitable timing window, or a fault

resulting from improper serialization of operations

b. Condition validation errors

Definition: faults resulting from those cases where (1) a condition is missing, (2) a

condition is incorrectly specified, or (3) a predicate in the condition expression is

missing

2. Emergent faults

Definition: faults where the software performs according to specification but still causes a

fault

a. Configuration errors

Definition: faults that result from (1) a program being installed in the wrong

place, (2) a program installed with incorrect setup parameters, or (3) a secondary

storage object or program installed with incorrect permissions

b. Environment faults

Definition: faults that result from insufficient attention being paid to the runtime

environment, or faults that occur when modules interact in an unanticipated

manner.

Note that while this classification system was designed to describe UNIX process faults,

they are general enough to apply to non-UNIX applications as well. Most exploits take

advantage of one of these faults that is known to be present in a target system.

17

Research Impact

While this information is not directly used in the implementation of the research system,

the body of data regarding faults and fault testing would be invaluable to the researcher

who is attempting to “fine-tune” a set of sensors within an application. A knowledge of

common faults could allow for extra-dense sensor placement in areas that might

potentially be vulnerable, although this would be time-consuming if not automated (see

Zamboni’s work, Section 2.6.3).

2.5 Types of Attacks

Heady et. al. define an intrusion as “any set of actions that attempt to compromise the

integrity, confidentiality, or availability of a resource.” [HLMS90] This definition can be

elaborated upon:

Confidentiality, integrity, and availability are the three Critical Information

Characteristics of the Information Systems Security Model. Confidentiality is the

assurance that access controls are enforced. Integrity ensures the accuracy, relevance,

and completeness of data. Availability ensures that information is provided to authorized

users when it is needed. These characteristics represent the full spectrum of security

concerns in an automated environment [NSTI94]. An attacker attempts to subvert system

security to gain access to information, alter information, or deny use of the system to

other users [Cros95]. The impact of an attack can be determined by examining how it

impacts these three characteristics. Several examples are presented.

18

Scanning

A successful scan may reveal information about the topology of a network. Such

information is useful to the attacker, who uses it to determine which systems present the

most tempting targets, and which exploits might be effective against them. The nmap

tool, for example, is used to identify live systems, perform operating system guessing,

and scan for open ports on a system. [Scam01]. There are defensive steps that can be

taken to eliminate or mitigate the success of such scans, but this becomes more difficult

and resource-consuming as the scans become more sophisticated and complex. Scanners

are important weapons in the arsenal of the attacker, but they are not in themselves

sufficient to violate any of the three Critical Information Characteristics.

Denials of Service (DoS)

It is generally much easier to disrupt the operation of a network or system than to gain

access or escalate privileges on a system. There are several types of DoS attacks,

including bandwidth consumption, resource starvation, application crashing, and

manipulating routing tables and domain name servers [Scam01]. These attacks primarily

affect the availability of the system, although application crashing may lead to a loss of

data (integrity) and manipulating routing data is a violation of integrity and, perhaps,

confidentiality as well. The commonest DoS attacks are the ones that limit themselves to

bandwidth consumption and resource starvation.

Buffer Overflows

A buffer is a contiguous block of memory. A buffer overflow occurs when a value is

read or pushed into a buffer that is too small for it, resulting in the overwriting of data. A

19

buffer overflow exploit involves crafting a value such that when the overflow occurs,

control data or variables are overwritten with the desired data. Buffer overflows come in

two flavors, stack-based and heap-based, although stack-based exploits are by far the

most common. Over 60% of the advisories issued by Carnegie Mellon University’s

Computer Emergency Response Team in 2001 dealt with this kind of exploit [Ent01]. A

successful stack-based buffer overflow exploit allows arbitrary code to be executed,

usually for the purposes of escalating privileges. In the UNIX environment, exploits are

run on applications running with root privileges, or on applications that are root-owned

and have the setuid bit set (“set user ID on execution” – allows user1 to execute a

program owned by user2, with user2’s privileges). As root, the attacker has complete

control of the system. Once the exploit is run, the process on which it is being run

generally crashes. This situation represents a violation of confidentiality (the attacker has

subverted access controls to achieve access to every piece of data on the system),

integrity (the attacker can arbitrarily modify elements of the system), and availability (the

attacker can take down any part of the system). Thus it can be seen that buffer overflow

exploits represent a serious problem to computer security.

Race Conditions

A race condition can be defined as anomalous behavior caused by the unexpected

dependence on the relative timing of events. Put simply, one occurs when a privileged

process opens a vulnerability with the implicit assumption tha t it will be able to close the

vulnerability before it can be exploited; an operation is treated as atomic when it is in fact

not [Bish96]. In certain situations, a race condition can be exploited for the purpose of

20

escalating privileges or to access protected data. Bishop and Dilger note that most of

these attacks exploit flaws in a privileges program, or concurrent execution with a

privileged and unprivileged program; few exploit operating system flaws. They were

able to characterize various race conditions by describing them as “a minimal set of

environmental information and a minimal sequence of actions [that result] in a breach of

security.” Specifically, they identified the following conditions that indicate the

possibility of a race condition:

- Two sequential system calls refer to the same object using a file path name

- A system call refers to an object by name and the second call uses a file descriptor,

and the first call is not a call that maps a file path name to a descriptor

They tested for the presence of race conditions by using a analyzer program to scan code

for such sequences, then providing the information to a human analyst who evaluated the

environmental conditions [Bish96]. This method is a preventative; it does not detect

attacks, but instead attempts to identify (and subsequently eliminate) the conditions

which enable attacks.

Research Impact

For the purposes of this research, only intrusions that can lead directly to a breach of

confidentiality or integrity regarding the information contained on a host are considered.

2.5.1 Effect of Intrusions

There are myriad indicators that an attack is occurring or has occurred, if the appropriate

monitors are in place to identify the symptoms. This is not to say that it is reasonable or

21

even possible to monitor all effects. A few examples of effects can be provided to give

the reader an idea of the scope of the intrusion detection problem. The abstract term

“event” is used to describe a range of actions that cause or indicate a change in the state

of a system [Kunz93]. Thus, the term “events” can encompass system calls, libraries

accessed, sections of code executed, change of variable value, or change in resource load.

From the discussion of attacks above, it can be seen that the effects of most attacks can be

generally grouped into one or more of the following categories:

- Unusual or improper sequencing of events

- Additional unusual events

- Missing events

- Unusual time delay between events

The implication attached to all categories is that the abnormalities exist with respect to

normalcy. If an IDS cannot differentiate between normalcy and attack, then it is

ineffective.

Research Impact

This concept is relevant because the research system should theoretically be extensible to

detecting any of these attack effects with respect to any monitorable event types, even

though only execution paths are represented for the purposes of scope.

22

2.6 Methods of Monitoring Event Relationships

The four categories in Section 2.5.1 can be condensed further into the concept of

“relationships among events.” Techniques that can be utilized to characterize or identify

such relationships follow:

2.6.1 Path Profiling

Path profiling techniques are useful for characterizing execution paths of an application.

A common application of path profiling is for software testing, where it is important to

evaluate a program against a representative set of test data. Effective path profiling can

identify unexecuted statements or control flow. Ball and Larus present a technique that

uses a spanning tree to efficiently instrument a program such that path encoding is

compact and minimal [Ball96]. Their implementation, PP, runs exclusively on SPARC-

based machines; however, the same techniques that are used in their algorithm could be

useful to characterize intrusion types that affect the execution path of an application.

Research Impact

Path profiling using a technique such as that encoded in PP would be an excellent way to

perform basic application instrumentation. Using this method would ensure at a

minimum that the various paths were represented, even if all the sensors required to

detect anomalies were not placed.

23

2.6.2 Temporal Signatures

Recently, Doyle et. al. have proposed an approach based on an event-characterization

language that incorporates and extends signature and anomaly methods. This method

combines knowledge about activities, temporal regions, and environmental information

to define a “trend.” Their recognition system can use this trend template both for the

purposes of identification and in explanation processes [Doyl01a, Doyl01b].

Research Impact

Timing changes can be a way to detect intrusions. For example, a buffer overflow may

result in no significant difference in execution path, while creating a significant time

delay while the attack code is executed. The practicality of describing event timing is

discussed in Chapter 6.

2.6.3 Embedded Sensor Protection (ESP)

Zamboni presents in his thesis the Embedded Sensor Protection (ESP) system, in which

he uses small pre-positioned pieces of code within the OpenBSD operating system to set

flags during runtime. Based on the sensors that are set, he demonstrates that patterns can

be found that allow for the identification of certain attacks on the host [Zamb01]. While

the idea is intriguing, his implementation presents several problems. First, all sensors

must be individually hand-coded, and their placement individually determined based on

analysis of the open source code. This method is not only time-consuming but would

clearly not be applicable to the more common scenario wherein one is faced with

developing a defensive system for a host running an OS that does not have publicly

24

available source code. Furthermore, all his sensors are developed and placed based on

knowledge (acquired during vulnerability research and analysis of the code) of specific

vulnerabilities known to be exploitable by a would-be intruder. These specifically–

tailored sensors cannot be built without a priori knowledge of these logical flaws. It

follows logically that if the exact positioning of every flaw in a selection of code was

known, the vulnerabilities could easily be fixed. A relatively secure system could thereby

be created with much less effort than is required to write the sensors, test the system

against known attacks, and perform pattern matching to attempt to identify similar attacks

in the future.

Research Impact

The ESP system demonstrated the utility of using an embedded sensor system. This

research to a certain extent builds on the ESP system conceptually by attempting to

extend the utility of such a system to the case where each sensor is not hand coded and is

not specifically placed at fault points.

2.7 Generating Anomalies

Testing an anomaly-based system requires, obviously, a set of anomalies as test cases.

Previous research has used both real attacks and artificial, generated anomalies. Both

techniques have associated benefits and limitations.

Real Attacks

The most intuitive reason for testing against real attacks is that they are accurately

descriptive of the real threat. Conveniently, real attacks exist in huge repositories at

25

“computer security” sites such as packetstorm (www.packetstorm.org), catalogued by

operating system and application. It is possible to monitor the effects of real attacks in a

variety of ways and be confident that the effects are real and not an artifact of abstraction.

The limitation is that they may not be representative or general enough to appropriately

test a system’s classification mechanism. There are simply not enough non-DoS attacks

available for any single application to create a statistically relevant amount of test data.

Artificial Anomalies

Fan et al describe the goal of generating artificial anomalies as “to coerce an arbitrary

machine learning algorithm to learn hypotheses that separate all known classes from

unknown classes.” In contrast to real attacks, artificial anomalies must be generated.

The benefit of such a method is that a larger, more diverse set of data can be created,

leading to more general models of self and non-self. Fan et al use their algorithm to

design “’near misses,’ instances that are close to the known data, but are not in the

training data.” [Fan01]

Research Impact

It seems that such a technique could be used at a layer of abstraction – if a plausible

technique for characterizing “self” could be determined a priori, a wide range of “near

misses” could be designed based on that characterization. These anomalies could help

test the limitations of an IDS.

26

2.8 Summary

This chapter reviewed several background topics considered necessary for the foundation

of this research. The topics discussed included intrusion detection systems, evolutionary

algorithms, system and application vulnerabilities, as well as various types of attacks that

are enabled by these vulnerabilities. Several analytical methods used to monitor the

effects of attacks and a method for generating anomalies were also discussed.

27

3. High-Level Design

3.1 Introduction

This chapter outlines the methodology for the production of AIS detectors that can

be used within an application-based, anomaly-detecting IDS. The goal of this system is

to use a number of event sequence logs based on execution path markers and analyze

their order to find patterns that describe non-self sequences. These patterns are

incorporated into antibodies used by Genetic Programming agents in an attempt to do

sequential event analysis of potential intrusions. This chapter discusses specific research

objectives and examines solution methodologies. In addition, technical issues that

surfaced along the way are presented. Solution designs for each research objective and

challenge are explained in more detail in Chapter 4.

3.2 Overview of Objectives

1. It is necessary to define a set of operators that is sufficient to characterize the

relationships among a set of events that occur during process execution.

2. These relationships may be of varying complexity. Therefore, once a set of operators

is defined, a plausible technique for combining them so as to be able to cha racterize

more complex effects must be determined.

3. Once the descriptors have been produced, a process is needed to categorize the

descriptor as describing a normal sequence or an anomalous one.

28

4. A problem inherent to anomaly-based ID is that it is difficult or impossible to

differentiate between benign and malignant anomalies. This analytical step generally

must be performed by human analysts post-mortem, and is both time-consuming and

tedious. The fourth objective concerns an attempt to extract and compile data to

assist the analyst in making this determination.

The methodology is designed to address all these objectives.

3.2.1 Desired Characteristics of System

The system is application-based; it is not designed to detect scans, DoSs that

overload resources or tie up bandwidth, or any other attacks in the realm of network-

based intrusion detection.

The system is designed to use event logs. This level of abstraction provides

several benefits. It allows testing of the system against a variety of simulated attack

types. Logs can be transferred from any system to a single Analysis System, so

“portability” is not an issue. This log transfer is also good for security: attackers tend to

cover tracks on victim systems, so it is good security practice to keep records elsewhere.

Lastly, by using logs, the potential of a Denial of Service being performed against the

IDS is eliminated. Attackers often attempt to “flood” a system with data if they are

aware (or suspect) an IDS is on it. This overloading can cripple or crash an IDS that is

attempting to perform detection in real-time, in which case any attacks performed after

the DoS are missed.

It is assumed the test application is instrumented with sensors using path profiling

techniques, or by random dynamic instrumentation (see Chapter 6) if only the executable

29

is available. These “canary” sensors are individually and uniquely identified; when their

code is executed, they “trigger” and write their identifier to a log. A sequential log

represents the order of triggered sensors as a one-dimensional array of size m where log

entry[m] represents the mth sensor to trigger. The system is given a training data set of

“self,” non-attack logs that is uses to develop a set of antibodies. These antibodies

represent event sequence relationships unbounded by event size windows. Genetic

programming techniques are used to develop these antibodies, as GP was determined to

be an appropriate way to develop a range of differently-sized antibodies appropriate for

the task. These antibodies are then “deployed” against a test set consisting of both self

and non-self logs to determine the efficacy of these techniques. Analyst evaluation of the

results creates a feedback loop to update the antibodies.

3.3 High-Level Design

The design incorporates certain components of the general AIS model.

3.3.1 Pseudocode for Overall Structure

create first generation
do
{ //TRAIN

evaluate generation against training set
negative selection

select all sirens that do not match self
perform affinity maturation for selected sirens //OPTIONAL
place matured sirens in Antibody DB
replace with newly-created ones

create next generation
use EA operations

}while not enough antibodies

30

//DEPLOY
for all test cases
{

run antibodies against test case
provide feedback

}

3.3.2 Design of Program

Figure 1. A Modified Subset of the AIS Cycle

31

The design incorporates the components of the cycle illustrated in Figure 3.1. This cycle

is based on that described by Williams [Will01].

3.3.2.1 Chromosome Generation

A design is presented for the GP “sensor analyzers” that are used in the system.

Because these monitor programs are supposed to sound an alarm in the event of detection

of a potential intrusion, they are referred to as Sensor-based Intrusion Response Event

Notifiers, or sirens. If a siren survives the Negative Section process, it becomes an

antibody.

Producing the sirens is a matter of finding an appropriate grammar. A context-

free grammar (CFG) is a language generator; in this case each chromosome generated is a

string in the language. A CFG is used for several reasons. A context- free grammar is

used to produce a Type 2 language, and is the minimum level grammar required to ensure

that all words produced are of the correct structure to enable recombination. Specifically,

recombination must always result in well- formed words. This goal cannot be achieved

with a Type 1 or Type 0 language. Furthermore, a context-free language is a superset of

a regular language; therefore if a regular language is sufficient to characterize either self

or non-self, the regular language can be described as a subset of the context- free

language.

32

More formally, a context- free grammar G is a quadruple (V, Σ, R, S), where

[Davi94]:

V is an alphabet,

Σ (the set of terminals) is a subset of V,

R (the set of rules) is a finite subset of (V-Σ) x V*, and

S (the start symbol) is an element of V-Σ

When using a CFG, one starts with the symbol S and applies the rules defined in R to

create a word in the language. In this case, a word is a siren, and the language describes

potential system events. Once we know which terminals and functions we need to

characterize in the system, developing a CFG to automatically generate initial generations

is relatively simple.

3.3.2.2 Operators and Operands

This section discusses the set of terminals (operators and operands) necessary for

this undertaking in terms of functionality and purpose. Implementation is covered in

Chapter 4.

One of the most important things to consider in GP is what terminals need to be

used. If these terminals are not designed properly, it may be impossible or at least

improbable that the system can evolve an acceptable solution. For example, if a system

were designed to perform symbolic regressions for cubic equations (e.g. f(x)=x3+2) and

the only terminals defined were “1” and “add,” the system would never be able to find

33

the desired solution. One would in this case desire additional terminals representing “x”

and “multiply.”

Some terminals must be able to represent a set of temporal relations among

events, as represented by the log files. Terminals must be able to access and manipulate

the log data to determine if the relationship represented exists in the log. For example, it

might be desirable to describe the following situation:

Within a certain number n of events beginning at a particular event, Sensor X is

triggered, then Sensor Y is triggered twice. Within this same event range Sensor

Z is triggered; it is not relevant when this occurs with respect to Sensors X and Y.

For this simple example, operators would be needed to describe the concepts of “[event]

happens before [event],” “[event] happens within [number of events],” and “[situation a]

AND [situation b] both occur.”

How can an appropriate set of operators be determined? Applying what is known

about the intrusions against which the system is tested can help solve this problem. For

example, buffer overflows have certain basic effects on the application against which

they are run: they can cause the program to crash, cause arbitrary code to be executed,

and/or cause other values to be overwritten. Tied to these effects may be significant

additional time delay between execution of commands. Depending on which “events”

are monitored, there are a variety of ways the effects can be detected.

A crash could occur after an event e1 that is normally followed by event e2. An

operator that represented the happens-before relation is a likely candidate for

34

differentiating between these two; “e1 happens-before e2” would evaluate to TRUE for

the normal case, but would evaluate to FALSE for the attack.

Another possibility involves an attack that does not crash the application, but

merely executes additional commands prior to returning to normal execution. If system

calls are being monitored, the normal case might be represented as {... e1, e2, ...} in an

event log, while the attack case would be represented by { ...e1, <additional system

calls>, e2,...” Here the happens-before operator would not be able to distinguish between

the two logs. A different operator is required to account for proximity of events; a

sufficient choice is a happens-within operator. Assume the existence of a log index

pointer that is set to point to the first event in a log: e1 in this example. The function “e2

happens-within 1” represents the question, “Does event e2 happen within one event of the

pointer?” This function is perfectly capable of classifying the two cases, and if the

number of events is set to the size of the log, this function is equivalent to the happens-

before version. To move down the log (so that it is possible to characterize relationships

between any pair of events) requires a function that can reset the index pointer. This

requirement is accomplished by adding a similar operator, happens-within-reset, which

resets the index pointer to point to the event if it is found within the required number of

events. Both of these operators evaluate to TRUE if the conditions are met and false

otherwise. The happens-within operator is still needed to characterize cases where a set

of events are present, but in no particular order (e.g. if both sequences {e1, e3, e2, e4} and

{e1, e2, e3, e4} were considered “self”). This example also illustrates the need for a

logical AND operator to link these relationships together.

35

Now consider the simplest form of a case involving a break in execution that

occurs within a loop:

Self = {e1, e1}

Attack = {e1}

None of the above operators can assist in differentiating between these two logs. We

need to add an operator that can move through a sequence even if the events are

duplicates of the events pointed to by the index pointer. A next operator that takes event

e as a parameter will satisfy; it looks for the next occurrence of e and sets the index

pointer to its position if found. As above, if it is successful it evaluates to TRUE,

otherwise to FALSE.

Are these operators sufficient to characterize sequences? A more complicated

example illustrates that they are not. Consider the following highly abstracted

pseudocode:

e1
if (variable)

then e2
 else

e3
 e4

If variable = 1, the event log reads: e1 e2 e4; if variable = 0, the event log reads: e1 e3 e4

This example demonstrates the need for a logical OR.

 next e1 AND e2 happens-within 1 OR e3 happens-within 1 AND next e4

This siren describes both these cases.

 A logical NOT is also useful; if a chromosome describes “self” cases, simply

negating it may be an efficient way to describe many non-self cases.

36

It may also be required to identify patterns consisting of multiple distinct

sequences that overlap to some extent; the addition of a previous operator enables the

discovery of such cases. It functions similarly to next, but searches backward in the log.

It can be seen that these terminals can characterize truncation, succession,

multiple orderings, removal, replacement, repetition, and interlacing of sequences, which

appears to cover the set of possible attack effects on sequences. Thus, the required set of

terminals consist of the following, where

E is the set of events,

I is the set of distances between events,

A represents the evaluation of a function or a logical combination of functions,

Event e ∈ E, and

Integer i ∈ I

Event Relationship Operators
(Note: Functions only have side effects if so stated)
e happens-within i:
Evaluates to: TRUE if event e occurs within i events of Log Pointer

FALSE otherwise
e happens-within-reset i:
Evaluates to: TRUE if event e occurs within i events of Log Pointer

FALSE otherwise
Side Effect: If TRUE, set pointer to the first occurrence of event e found at or after Log
Pointer.
e next
Evaluates to: TRUE if event e occurs in the remainder of the log (after Log Pointer)

FALSE otherwise
Side Effect: If TRUE, set pointer to the first occurrence of event e found after Log
Pointer.
e previous
Evaluates to: TRUE if event e occurs in the section of the log prior to Log Pointer

FALSE otherwise
Side Effect: If TRUE, set pointer to the closest location of event e found before Log
Pointer

37

Logical Operators
A1 AND A2
Evaluates to: TRUE if both A1 and A2 evaluate to TRUE

FALSE otherwise
A1 OR A2
Evaluates to: TRUE if either A1 or A2 evaluate to TRUE

FALSE if
NOT A
Evaluates to: TRUE if A evaluates to FALSE

FALSE otherwise

Evaluation Examples

Given a producible siren
5 5 happens-within-reset 7 3 happens-within AND NOT

its value when interpreted on two different logs can be determined.

1. Log = {1 2 3 4 5 6 7 8}

The pointer is set to 0, so that it points at event 1.
Evaluate first relationship: 5 5 happens-within-reset
 This relationship is TRUE; the pointer is reset to 4, pointing to event 5.

 The TRUE value (1) is pushed onto a stack
Evaluate second relationship: 7 3 happens-within

This relationship is TRUE.
 The TRUE value (1) is pushed onto the stack

Evaluate AND:
Two values (1 and 1) are popped off the stack.
1 AND 1 is 1; the one is pushed onto the stack.

Evaluate NOT :
One value (1) is popped off the stack.
NOT 1 is 0; the zero is pushed onto the stack.

The end of the siren has been reached; its evaluation is the value on the stack,
zero. Therefore, this siren does not match the log.

2. Log = {8 7 6 5 4 3 2 1}
The pointer is set to 0, so that it points at event 1.
Evaluate first relationship: 5 5 happens-within-reset
 This relationship is TRUE; the pointer is reset to 4, pointing to event 5.

 The TRUE value (1) is pushed onto a stack
Evaluate second relationship: 7 3 happens-within

This relationship is FALSE.
 The FALSE value (0) is pushed onto the stack

38

Evaluate AND:
Two values (0 and 1) are popped off the stack.
0 AND 1 is 0; the zero is pushed onto the stack.

Evaluate NOT :
One value (0) is popped off the stack.
NOT 0 is 1; the one is pushed onto the stack.

The end of the siren has been reached; its evaluation is the value on the stack, one.
Therefore, this siren matches the log.

3.3.2.3 Training

The goal of the training stage is to develop a set of sirens that represent non-self

sequences. The assumption is that an intrusion results in different event patterns at the

sensor level that are “matched” by one of the non-self sirens.

3.3.2.3.1 Negative Selection

Negative Selection in an AIS is intended to mimic the biological process by which

antibodies produced by an organism are screened. Essentially, an antibody is exposed to

a selection of normal components of the organism. If an antibody binds to one of these

components, it is discarded. Only the antibodies that do not “attack self” are allowed to

be deployed as part of the immune system. Similar methods are used in AISs, the goal

being to create a set composed of individuals that will respond to certain anomalies,

while yielding a low false positive rate. For this system, some method must be devised to

ensure no self-matching antibodies are found in the final set.

39

3.3.2.3.2 Affinity Maturation

Affinity maturation is an optional stage in this system because there are no demonstrably

appropriate ways of maximizing the “usefulness” of this type of antibody. The use of

“wildcards” in the chromosome, a common technique, would be useless with regard to

most of the terminals. For example, an antibody representing “Some unspecified event

occurs within 1 event of the pointer” would always alert, no matter what logs were used.

The operations likewise cannot be generalized; what meaning has the antibody “A some-

logical-operation A?” It cannot be evaluated. The only obvious way to generalize these

antibodies is by varying the “within i” integer values. Even this method is not as simple

as it may seem. An antibody with a low i value may be very specific (“e happens within

1 event of pointer”) or very general (“e does not happen within 1 event of pointer”).

Multiple logic operators may change or eliminate the effect of a single relationship

operator; there is no consistency. Since there is no way to measure the volume of the

antibodies, the only logical compromise is to create two copies and increment one and

decrement the other until they impinge on self or exceed the range of the set I. The

drawbacks of generalization may actually outweigh the benefits. One of the objectives of

this system is to attempt to locate the point in the log at which intrusion occurs; an

antibody that states, “An anomaly occurs somewhere in the last half of the log” is less

useful in this regard than one that states, “An anomaly occurs here.” It may be more

beneficial to avoid generality and aim for a large quantity of antibodies.

40

3.3.2.4 Quasi-GP Engine

This section briefly discusses the application of GP techniques in this research,

and how they differ from traditional GP.

Traditional generational GP uses recombination and point mutation operators to

create generations of program chromosomes. The individuals in each generation are

evaluated using a fitness function, and a selection process is applied to determine which

will reproduce. If the problem is solvable, the fitness function and selection mechanism

are designed properly, the system is run for sufficient time, it is probable that a satisficing

solution can be found. Generally a single solution is sufficient, and convergence plays a

large role in the speed with which a solution is found.

In this research, by contrast, the mutation operators, fitness function, and selection

mechanism all exist, but they are applied on consecutive generations not to evolve a

single satisficing solution, but to evolve many solutions. Once a “solution” is found, it is

added to the set of antibodies and replaced with a new chromosome. As a result, the

engine faces a somewhat Sisyphean task; just as solutions are achieved, they are removed

from the genetic pool. It is important to note the constant influx of new genetic material

that frustrates the process of convergence. This is beneficial for our purposes as

excessive convergence is not desirable.

Recombination/Crossover

To ensure that there are no type issues – for example, feeding a function a logical

evaluation when it is expecting an integer – only branches where the first nodes are of

equivalent types will be swappable.

41

Point Mutations

Point mutations include replacing an event with another from set E, replacing an integer

with another from set I, and replacing operators with similar types (i.e. AND ⇔ OR).

Fitness Function

A fitness functions is required for the training phase. Specific low level design and

implementation is discussed in Chapter 4.

Deployment

Deployment involves running the sirens on a set of logs representing a combination of

known self and known attack logs and noting the results for human analyst response.

Feedback loop

 The feedback subsystem should work by adding or removing antibodies as indicated by

analyst response. The possible cases are as follows:

? Both self and attack cases, log is properly classified: No changes are necessary.

? Self, classified as attack (False Positive): The antibody is removed from the database

and the log is added to the set of training cases.

? Attack, classified as self (False Negative): An antibody is generated that can

differentiate between the training set and the test case. It is added to the database.

3.3.3 Design of Training and Test Sets

The antibodies need to be tested using a variety of attacks that represent common

exploits. These attacks can be designed or simulated, as long as they represent a variety

42

of sizes and complexity over a range of relevant attacks (e.g. buffer overflows, race

conditions). To generate the training sets, the events of an application are represented as

a regular expression. A set of words produced from this expression becomes the training

set.

It is important to note that this technique is used only for research purposes to

demonstrate some of the capabilities and limitations of the system. If it was known a

priori that an application could be represented by a particular regular expression, and that

any word not produced by the expression is an intrusion/anomaly, we could save

ourselves a lot of effort by just looking at a test log and testing the “word.” There are

three reasons these assumptions cannot be made in the real world:

1. It cannot generally be determined (without extensive human analysis) what

expression would actually represent the set of desirable paths; extensive human

analysis is to be avoided.

2. Alternatively, a full representation of the source code might actually include

“anomalies;” for example, a branch that is only used in case of massive error would

not normally be executed, but the analyst might want to be informed in the case that

event occurred.

3. Even if an appropriate expression was able to be determined, it is not necessarily

exclusive of anomalies. An anomaly might not be detectable; i.e., a modification to a

word might yield another word produced by the same expression. Such cases are

possible sources of false negatives using this method.

For these tests, the execution paths are represented as follows:

43

- Each command is a unique event

- Conditionals:

The situation

e1;
if(condition)
 e2;
e3; //etc

is represented as: (e1 (Λ + e2) e3)

Whereas

e1;
if(condition)

e2;
else

e3;
e4; //etc

is represented as: (e1 (e2 + e3) e4)

- Loops: for and while

A for loop

e1;
for (i = 0; i<n; i++)

e2;
e3; //etc

becomes (e1 (e2)n e3)

while loops are represented similarly:

e1;
while(condition)

e2;
e3; //etc

becomes (e1 (e2)* e3);

44

however, for the purposes of actual data set generation, the Kleene star is replaced with a

more practical upper limit, such as “4.”

Test sets

The test cases of “unknown” logs require a set of logs that simulate self, and a set that

that represents anomalous intrusions. To generate these logs, words are produced from

the regular expression used to generate the test set. Some of these words are kept

unmodified; they become the “self” test set. Note that the words comprising this set must

be tested against the training set to determine that there is no overlap between the sets; if

there is, the offending test word must be replaced or eliminated.

The “attack” subset of the test cases is created by modifying words (as described in

Section 4.2.8) to simulate the effect of an intrusion.

3.4 Summary

This section outlined the methodology for the high- level design of a hybrid form

of AIS that acts as an application-based, anomaly-detecting IDS. The goal of this system

is to use a number of event sequence logs based on execution path markers and analyze

their order to find patterns that describe non-self states. These patterns are incorporated

into antibodies used by an AIS in an attempt to do sequential event analysis of potential

intrusions.

45

46

4. Low-Level Design and Implementation

4.1 Introduction

This chapter covers design issues and implementation details to accomplish the

research objectives covered in Chapter 3.

4.2 Implementation/Problem Solving

This section discusses specific implementation details and problem solutions.

Choice of programming language, GP terminals used, chromosome generation, and

different phases of the AIS and GP subsystems are discussed. Design of synthetic data

sets and a data extraction method are also discussed.

4.2.1 Implementation Details

The system was implemented in C++, a commonly used object-oriented language. C++

was chosen over Java due to speed issues with the Java Virtual Machine. While Java is

often preferred due to its portability, this system uses logs, rendering the problem moot.

4.2.2 GP Terminals

This section discusses the implementation of terminals (operators and operands)

deemed necessary for this research.

47

It was established in Chapter 3 that the sequencing operators happens-within,

happens-within-reset, next, and previous, combined with the logical operators AND, OR,

and NOT appear to be sufficient to characterize truncation, succession, multiple

orderings, removal, replacement, repetition, and interlacing of sequences. All operators

were implemented with the exception of previous, which was only required to enable the

characterization of interlaced sequences. A review of attacks indicated that an operator

that could perform identification of interlaced sequences would be superfluous; no

attacks within the scope of the research would require it to identify them.

The terminals were implemented as follows:

Operands

E (set of events): integers in the range [1,n], where n is the number of “sensors”

I (distance between events): integers in the range [0, (size of largest log in training set)-1]

Functions

All functions were implemented using post-fix notation for to facilitate stack-based

evaluation.

Event Relationship Operators
e happens-within i:
Arity: binary
Represented as: e i happens-within
Returns: integer: 1 if TRUE, 0 if FALSE

e happens-within-reset i:
Arity: binary
Represented as: e i happens-within-reset
Returns: integer: 1 if TRUE, 0 if FALSE

48

e next
Arity: unary
Represented as: e next
Returns: integer: 1 if TRUE, 0 if FALSE

Logical Operators
A1 AND A2
Arity: binary
Represented as: A1 A2 AND
Returns: int: 1 if A1 = 1 and A2 = 1, 0 otherwise

A1 OR A2
Arity: binary
Represented as: A1 A2 OR
Returns: int: 1 if A1 = 1 or A2 = 1, 0 otherwise

NOT A
Arity: unary
Represented as: A NOT
Returns: int: 1 if A = 0, 0 if A = 1

4.2.3 Chromosome Generation

As noted in Chapter 3, producing the sirens is a matter of finding an appropriate CFG.

Based on the discussion of necessary operators, the generation rules can be defined as

follows:

Intermediate Symbols:

L: placeholder for a logical evaluation (AND, OR, NOT)

B: placeholder for a relationship evaluation

A: placeholder for a logical or relationship evaluation

49

Production Rules:

S ? L
S ? B
L ? A A and
L ? A A or
L ? A not
A ? L
A ? B
B ? E I occurs-within
B ? E I occurs-within-reset

A symbol has equal probability of having any of the relevant rules applied; for example,

‘L’ has a 33.3% probability of becoming ‘A A and,’ ‘A A or,’ or ‘A not.’

All chromosomes were implemented as linear doubly- linked lists of nodes (represented

as structs) to allow for easier expansion of the terminal set, should functions of different

arity ever need to be added to the system.

4.2.4 Training

The goal of the training stage is to develop a set of sirens that represent non-self.

Negative Selection

Negative Selection is accomplished by only adding to the Antibody Database sirens

which did not match self data and which were not already present in the Database.

Matches are determined by evaluating the sirens against each element of the test data set

and OR-ing the results, so that if any one of the test sets matches it, it does not become an

antibody. If the siren is a non-match for all training cases, the Database is then searched

for a matching chromosome; if none is found, the siren becomes an antibody. This

method ensures the set is composed of unique individuals.

50

Affinity Maturation

Affinity maturation using the methods described in Chapter 3 was originally

implemented, but pilot tests revealed an unacceptable degree of nicheing occurring as a

result. Essentially, the individuals from the first several generations disproportionably

contributed to the Antibody Database by flooding it with multiple slightly altered copies

of themselves, lowering the diversity of the Antibody population and lowering the rate of

anomaly detection. This nicheing also served to make analysis more difficult in the cases

when anomalies were detected; many antibodies were subsumed by others almost

identical to themselves, resulting in the extraction of more redundant information.

4.2.5 Quasi-GP Engine

A generational design was used. This means that during each iteration step (generation),

all the individuals in the current population are evaluated and given a fitness value.

4.2.5.1 Selection

A standard binary tournament selection with replacement was used [Banz98]. Two

individuals are selected from the population and the individual with the highest fitness is

allowed to survive to the next generation. Neither is removed from the population pool.

This process is repeated until the required number have been selected.

51

4.2.5.2 Crossover

Crossover was done by selecting a point from 0 to “size of chromosome” and swapping

the branch beginning at that point with a similarly-chosen branch from another siren. To

maintain operand type consistency, a context preserving method was used that insured

crossover only occurred if the selected nodes were of exchangeable type [Banz98]. For

example, a Boolean expression could not be replaced with an Integer type.

4.2.5.3 Point Mutations

Point mutation was accomplished using the following mutators, as appropriate, with

probability pm:

If chosen node is of type

E: replace with randomly chosen sensor

I: replace with randomly chosen integer

Logical, binary (AND/OR):

Replace with another, or negate by inserting NOT after it

Logical, unary (NOT):

Remove the node; equivalent to negation

Relationship, binary (happens-within(-reset)):

Replace with another, or negate

Relationship, unary (next):

Negate

52

4.2.5.4 Fitness Function

Training phase: A simple yet serviceable fitness function was used during the training

process. The initial “score” of each siren was set to 0. The chromosome of a siren was

evaluated on all n elements of the training set. For each training log, if the evaluation

was equivalent to 1, the siren was considered to have “matched” the log, and the value 1

was added to the score. After the siren had been evaluated for all members of the training

set, the score was interpreted as an inverse measure of fitness; i.e., the sirens with the

lowest scores matched the least number of training sets and were therefore of the highest

fitness. Attempts were made to further differentiate among sirens’ fitness based on the

size of their chromosomes; however, pilot tests indicated this idea was not appropriate, as

it drove the sizes down so that there was not sufficient variation to fill the Antibody

Database in a reasonable time.

4.2.6 Deployment

Deployment was simulated by running the siren antibodies on a set of logs representing a

combination of self and attack logs. The accurate classifications were known to the tester

a priori. Execution time and classification results resulting from deployment are noted in

Chapter 5.

4.2.7 Feedback Loop

Although the feedback subsystem would be a necessity if this system were to be

deployed in the real world, the full feedback system was not implemented. The reason for

this decision is that for research purposes, it is desirable that all elements of the data set

experience the same environment; i.e., the same set of antibodies. If the full feedback

53

loop is in place, this cannot be accomplished, as feedback from a false classification may

affect the classification of subsequent logs. However, during testing, the feedback loop

was partially implemented so as to be able to test it in a controlled manner. (Chapter 5

presents the details.)

False Negatives: In this case, no antibody alerts on a known anomaly. A number (g) of

further generations of antibodies are evolved. If within g generations, an antibody is

generated that can differentiate between the training set and the test case, then it is added

to the Antibody Database. The number of allowable generations is limited because pilot

tests indicated it could take an unreasonable amount of time to evolve an antibody that

satisfies these conditions. Moreover, it may be impossible to differentiate between an

“anomaly” log and a “normal” log in real life – for example, if the anomaly did not create

a measured change in the execution path. With this system, training and test cases are

designed so that this is not the case.

False Positives: In this case, one or more antibodies alerts on a known normal log. The

log is added to the training set, and the alerting antibodies are removed from the

Database.

4.2.8 Design of Training and Test Sets

All logs were represented as text files containing an un- indexed, one dimensional array of

event data. Synthetic training and test sets were built in the following manner. Two

54

programs are written to assist in the development of data sets. The first takes a regular

expression (in an unconventional form) and converts it to a functional representation.

The standard Kleene star operation is defined as creating the largest set that can be made

by concatenating zero or more strings from a set of strings. For the purposes of this

research, a “limited Kleene star” operation is defined as creating the set of strings that can

be made by concatenating one to n. This operation is represented by “kstar(),”

disjunction is represented by or(), and conjunction is represented by “cat().” For

example, the regular expression

((a1+a2+a3+a4) (a9 (a10+a11))*) is transformed to

cat(or(a1,or(a2, or(a3,a4))),kstar(cat(a9,or(a10, a11)))))

The second program fully enumerates all words producible by this expression. Each

word represents a normal log created by traversing a particular execution path. For this

example, with n=2, the words in the language are:

a1 a9 a10
a1 a9 a11
a1 a9 a10 a9 a10
a1 a9 a10 a9 a11
a1 a9 a11 a9 a10
a1 a9 a11 a9 a11
a2 a9 a10
a2 a9 a11
a2 a9 a10 a9 a10
a2 a9 a10 a9 a11
a2 a9 a11 a9 a10
a2 a9 a11 a9 a11
…etc

From this set, training and test sets are produced. The second largest power of two less

than the number of words produced becomes the test set size (eight, in this case). The

55

test set is built by selecting random strings such that there are no duplicates in the test set.

Training sets of cardinality two through “test size,” in multiples of two, are produced by

selecting random strings such that there are no duplicates in the training set and the

training and test sets do not intersect. This process would produce three training sets with

cardinality of two, four, and eight. The test set is then modified so that half the strings

represent anomalies, to simulate the effect of an intrusion. Modification is done by

applying truncation, removal, insertion, and replacement operators, each to one quarter of

the anomalous test set.

Truncation: A random number of events (between one half and one quarter of the log

size) are removed from the end of the log. This modification represents attacks that cause

a break in execution, such as many stack-based buffer overflows.

Removal: A random number of events (between one half and one quarter of the log size)

are removed from some portion of the log. This modification represents an attack that

causes the application to take an unusual path that skips normally-seen events.

Insertion: A random number of placeholder events that will be unrecognizable to the

evaluation portion of the system (between one half and one quarter of the log size) are

added to the log. This modification represents an attack that causes the application to

take an unusual path that encounters normally-unseen events.

Replacement : A random number of events (between one half and one quarter of the log

size) are replaced with a number of placeholders (not necessarily of equal cardinality to

the set of events replaced) that will be unrecognizable to the evaluation portion of the

system. This modification can represent an attack that causes the application to take an

56

unusual path; in an abstract sense it can also represent a quantitative change in some

other monitored event type, such as time delay between commands.

Specific training and test sets are described in Chapter 5.

4.3 Difference Analysis

This stage was added to facilitate human analysis of anomalies by creating what is

referred to as “Difference Essences,” or DEs. DEs represent only the parts of an antibody

chromosome that specifically match a nonself log and do not match any of the self logs.

DE sets are extracted from altering antibodies for each test log. Basic DEs were isolated

by using DeMorgan’s Laws and splitting chromosomes using the following algorithm:

Use DeMorgan’s Laws to simplify chromosomes by moving nots as far down the tree as

possible:

((A B or) not) ? ((A not) (B not) and)

((A B and) not) ? ((A not) (B not) or)

Remove all negated nots:

((A not) not) ? A

Where the terminal function is an or or and, both branches are individually tested and

added to the DE set if they are not self-matches.

Analyze Difference pseudocode:

start processing from the end of the chromosome (the rightmost operator)

if operator = = (not || happens-within || happens-within-reset)
 add branch to Difference Essence set
else if operator = = and
{

57

if(!rightbranch matches self)
 {
 Analyze Difference(rightbranch);
 }

 if(!leftbranch matches self)
 {
 Analyze Difference(leftbranch);
 }
}
else if operator = = OR
{
 if((!rightbranch matches self)&&(rightbranch matches nonself))
 Analyze Difference (rightbranch);

 if((!leftbranch matches self())&&(leftbranch matches nonself))
 Analyze Difference(leftbranch);
}

This method breaks out all DEs, which can be combined using conjunction to produce a

description of the difference between the anomaly and “self.” It is important to note that

the DEs themselves can have their pointers set to various starting points within the log –

in other words, 3 happens-within 2 (of index position 0) is different than 3 happens-

within 2 (of index position 2).

 This process was successfully implemented. Further refinements are necessary; it

is possible to have several unique DEs that describe overlapping conditions:

3 next (after pointer [0]) includes 3 next (after pointer [2])

If the first is true, the second must also be true and vice versa. The superfluous

statements need to be removed.

58

4.4 Summary

This chapter discussed in detail the low-level design and implementation of the system.

In addition, issues that surfaced throughout the development process were explained, and

appropriate solutions were presented.

59

5. Test Cases and Results

5.1 Introduction

This chapter reviews relevant research objectives, experiments, test cases, and

evaluation results. Analysis of test results indicate that the system is successful in

reaching its objectives. Further research and exploration is necessary to more thoroughly

verify concepts brought about by this research. A set of future work recommendations is

outlined in Chapter 6.

5.2 Design of Experiments

These experiments are needed to determine whethe r the implemented system can

successfully classify event logs as “normal” or “anomalous.” They assist in determining

to what extent the research is successful in achieving Objective III: Determine an

appropriate method of classifying these relationships as “normal” or “anomalous.”

Testing occurred in several phases. Initial pilot tests were made to determine to

what levels certain factors should be set. The results of these tests are discussed

qualitatively in the Factors section. These levels were maintained throughout testing to

provide continuity for all tests and to limit the number of experiments.

After these levels were set, experiments were run to determine the effectiveness

of the system as determined by levels of false positive and false negatives. These tests

were run with and without feedback to determine if feedback provided a benefit that

outweighed its drawbacks. These experiments were run on a small set of different

“simulated applications” represented by regular expressions.

60

5.2.1 System Boundaries

The System Under Test (SUT) is the IDS system. The Component Under Test

(CUT) is the amalgam composed of the antibody generator and the detection module

within the IDS responsible for identifying anomalies based on the logs. This CUT is

being evaluated for effectiveness of detection. The system accepts an application log as

input and outputs a classification – potential attack or normal behavior – based on the

alerting of antibodies.

5.2.2 System Services

The service the system provides is the classification of a set of “logs” by the IDS.

The possible outcomes are values representing the number of unique sirens that alert on a

particular test case. These values can be interpreted as “Self” and “Non-self”

classifications associated with a degree of sample frequency. These outcomes comprise

all possibilities.

5.2.3 Performance Metrics

For the IDS, effectiveness describes the ability of the system to detect anomalous

occurrences. For example, if a test set of 100 logs contained 20 attacks, and the system

successfully identified 10 attacks while misidentifying 5 of the “self” test cases, the

following statements could be made:

- 10/20 attacks were detected; the false negative rate is 50% for this test set
- 5/80 false positives occurred; the false positive rate is 6.25% for this test set

61

Efficiency is the performance, quantitative and qualitative, of the analysis

program. It can be measured as raw time (seconds to completion), or calculating ratios of

time as factors are manipulated. Efficiency is measured for this system to assess the

effect of increased number of training cases in a training set on the time required to

produce a set number of antibodies.

5.2.4 System Parameters

System parameters include the Central Processing Unit (CPU) model and speed,

amount of memory, operating system. The following hardware/software specifications

are used to evaluate the system: Pentium III, 1.7 GHz with 512 MB RAM running

Microsoft Windows Me. All code is written predominantly in C++.

5.2.5 Workload

The workload submitted to the system consists of two parts: a training set and a

test set. The training set represents the results of sequences of “common” appropriate

logs produced by the application. Once the system is exposed to a set of “self” training

data, the test set is introduced. The test set is similar to the training set, but is modified to

represent requests that exploit vulnerabilities in the application as described in Chapter 4.

The IDS processes the sets and reports the number of antibodies that alert.

62

5.2.6 Factors

The factors to consider for designing these experiments can be decomposed into

two categories: those that characterize the data, and those that affect the operation of the

IDS itself.

The number of sensors used to create the data sets has a major impact on the

performance of the IDS, as each additional sensor increases the search space. Number of

sensors is varied: low, medium, and high. A low number represents an application with

only a few sensors placed at strategic points, the locations of which are determined via

path profiling or another instrumentation technique. A high number, by contrast,

represents a system with sensors placed after every line of code. For the purposes of

scoping the assumption is made that the applications represented in these experiments are

of relatively small size and can be adequately instrumented using 16 sensors. This

assumption is reasonable; many commonly exploited applications are quite small (10-30

commands) and have relatively few possible execution paths. Because it is important to

test the ability of the IDS to characterize complex programs, all regular expressions used

to generate training and test cases are designed to produce 28-29 execution paths.

The IDS factors include population size during antibody production, termination

condition for the antibody production stage, and the frequency of recombination and

point mutation. Pilot tests were completed to determine settings for these factors based

on results when run on a representative selection of training sets using 16 sensors. Levels

were tested at factors of two.

63

Population size was set to 512 sirens per generation. This size was found to be

both consistent and stable in terms of the number of antibodies produced from each

generation. With a significantly smaller population size, the number of antibodies

produced tended to dwindle rather quickly, resulting in a rate of production that was

lower and of no apparent better quality.

The maximum size for a chromosome was limited to 64 nodes. With significantly

fewer nodes, the system again produced antibodies at a very slow rate, since there were

many fewer possible sirens in the search space. With significantly more nodes,

evaluation of the individuals in each generation became unmanageable after several

generations, and the system often crashed from memory exhaustion (heap overflows).

A higher percentage of false negatives was correlated with a smaller Antibody

Database; however, if the system was set to produce significantly more than 8192,

production took an unacceptably long time, in some cases running days without

terminating. Data from a simple example using a training size of 16 can be seen in Table

1.

A goal of 4096 antibodies was determined to be an acceptable termination

criterion. With higher cardinality training sets, the termination criterion took

disproportionally longer to reach; thus, another termination criterion was added to limit

the number of generations to 1024. With mutation in standard GP, where convergence is

important, the emphasis is usually on recombination; point mutations are usually kept

relatively low, limiting the amount of new genetic material in the system. In this system,

the ideal was to have just enough convergence to allow solutions (antibodies) to be

64

reliably produced, but to represent as diverse a population as possible within the solution

criteria. For this reason, both recombination and point mutation are performed on every

individual at each generation.

Table 1. Minutes to Develop Antibodies

Number of Antibodies Minutes to produce
0 0.02
1 0.02
2 0.02
4 0.02
8 0.02

16 0.02
32 0.02
64 0.02

128 0.03
256 0.04
512 0.07

1024 0.17
2048 0.84
4096 5.49
7280 (approximately) 570

Further experiments were run using a range of training set sizes, since training is

both a major contributor to the effectiveness of an AIS and very time-consuming. Due to

the limitation on words in the regular language, all test sets consisted of 128 logs, half

normal and half modified.

For efficiency of the IDS, direct measurement was used by comparing execution

times. It was found that if all other factors were kept consistent, a doubling of training

set size roughly corresponded to a doubling in execution time; in other words, growth

was apparently linear regarding this factor. A single training set size, 16, was chosen as a

65

result of these tests. This value was chosen because for several “applications,” it

consistently produced results where an acceptable separation between normal and

anomalous data could be found (i.e with low false positive and false negative rate) in

relatively little time.

5.2.7 Experimental Design

Experiments were designed to demonstrate the functionality of the program over a

range of input types and to illustrate the effect of feedback. Six “application”-regular

expressions were developed (Table 2).

Table 2. Regular Expressions with Number of Strings Produced

Number Regular Expression Strings Produced
1 ((a9+a10+a11) (a1 (a2+a3+a4))* a16) 360
2 (a1 a2 (a9 (a10+a11+a12))* (a13 a15)* a16) 480
3 (a1 (a2+a3+(a4+a5+a6+a7)*) a16) 342
4 (a1 a2 a6 ((a9+a10+a11) a12)* a13 (a15 a14)* a16) 480
5 (a1 (a2+a3+a11) a4 (a5+a6)* a9 (a7)* a16) 360
6 (a2 a6 a8 (a10 (a12 a14)*)* a16) 340

For each of the six regular expressions, ten test sets of 128 logs were developed. These

logs were divided in two; one set became a “tuning” test set and the other became the

“experimental” test set.

66

Experiments were done for the following conditions:

No Feedback:
 - One training set of 16 self logs was used to train the system.
 - One set of 128 test logs was run through the system, and results (detection rate

and FP rate) were measured.
- This experiment was run for each of the 10 test sets.

Limited Feedback:
 - One training set of 16 self logs was used to train the system.

- One set of 64 test logs was run through the system while providing feedback on
False Positive and False Negative hits. In the case of False Negatives, the
generations allowed to attempt to evolve a matching antibody were limited to 100.
Results were not measured.

 - The second set of 64 test logs was run, and results were measured.
- This experiment was run for each of the 10 test sets.

5.4 Results and Analysis

As noted, these experiments were performed for six different regular expressions.

Table 3 displays results in terms of mean number of alerts (with standard deviation in

parenthesis) without feedback.

Table 3. Mean Number of Alerts (Standard Deviation) without Feedback

 1 2 3 4 5 6
Truncation 53 (17) 166 (87) 72 (50) 373 (151) 213 (125) 321 (146)
Removal 19 (11) 43 (49) 26 (23) 51 (42) 47 (43) 21 (31)
Insertion 15 (15) 74 (110) 90 (129) 104 (110) 128 (130) 98 (168)
Replacement 10 (11) 54 (84) 46 (68) 85 (101) 86 (84) 74 (140)
All Anomalies 24 (22) 84 (98) 58 (81) 153 (168) 118 (119) 128 (175)
All Normal 5 (6) 4 (18) 13 (33) 5 (13) 13 (35) 2 (17)

67

Table 4 displays results in terms of mean number of alerts (with standard deviation in

parenthesis) with feedback.

Table 4. Mean Number of Alerts (Standard Deviation) with Feedback

 2F 3F 4F 5F 6F 7F
Truncation 53 (20) 171 (71) 59 (29) 308 (127) 194 (92) 306 (139)
Removal 14 (10) 29 (24) 19 (13) 44 (36) 38 (31) 19 (28)
Insertion 8 (11) 60 (105) 55 (91) 73 (103) 131 (116) 103 (182)
Replacement 6 (13) 46 (79) 34 (46) 83(96) 79 (70) 85 (156)
All Anomalies 20 (24) 77 (94) 42 (55) 127 (143) 111 (101) 128 (176)
All Normal 0 (1) 2 (16) 2 (10) 2 (9) 4 (16) 0 (2)

Since results were similar, a single representative case is discussed. All logs in

this case came from Expression 2: (a1 a2 (a9 (a10+a11+a12))* (a13 a15)* a16), which

produced 480 words when fully enumerated using n=4.

Figure 2 shows the distribution of the number of alerts for both normal and

anomalous data. It can be seen that if the number of alerts after which a log is classified

as self is set quite low, the majority of the normal and anomalous logs in the test sets can

be classified correctly.

 Figure 3 illustrates the distribution of alerts for the different modifications. It can

be seen that there is very little overlap between the number of antibodies that alert on

normal logs and the number that alert on truncated logs. This trend appears to hold for

the other regular expressions as well. The other modifications are less easily separable

from normal data.

68

Figure 2. Number of Alerts produced for Normal and Anomalous Logs, No Feedback

Figure 3. Number of Alerts produced for Normal and Differently Modified Logs, No Feedback

69

Figures 4 and 5 display the means with 90 percent confidence intervals for the

different anomaly types, all types combined, and the unmodified strings. It can be seen

that only the Truncation modification can be statistically distinguished from the normal

data at this degree of significance in both figures. In Figure 5, the feedback appears to

have enabled the Removal modification to also be distinguishable from normal; however,

an examination of the data for the other regular expressions reveals that this change does

not represent a consistent trend. Overall, there is no significant benefit to the use of

partial feedback.

0
50

100
150
200
250
300

Tru
nca

tion

Rem
ova

l

Ins
ert

ion

Rep
lac

em
en

t

All
An

om
alie

s

All
Norm

al

N
u

m
b

er
 o

f
A

le
rt

s

Figure 4. Means with 90% Confi dence Intervals (No Feedback)

70

0
50

100
150
200
250
300

Tru
nca

tion

Re
mova

l

Ins
ert

ion

Rep
lac

em
en

t

All
 An

om
alie

s

All
Norm

al

N
u

m
b

er
 o

f
A

le
rt

s

Figure 5. Means with 90% Confidence Intervals (with Feedback)

Figure 6 was produced by classifying each log according to whether the number of alerts

it received was greater than the value on the x-axis, which represents a critical decision

point (CDP). It can be seen that classification can be performed by setting the CDP to

the desired value and measuring the false positive and false negative percentages

achievable as a result.

If FPs and FNs are of equivalent “badness,” then the best CDP for this application

with these factors is approximately 3 alerts; at that point, the percentage of FPs is

equivalent to the percentage of FNs – approximately 20%. This can be seen in Figure 7.

71

0.0

20.0

40.0

60.0

80.0

100.0

0 100 200 300 400

Number of Alerts

P
er

ce
n

ta
g

e

FP%
FN%

Figure 6. Control Results: Percentage vs. CDP for FP and FN

0.0
5.0

10.0
15.0
20.0
25.0
30.0

0 5 10 15 20

Number of Alerts

P
er

ce
n

ta
g

e

FP%
FN%

Figure 7. Control Results – Detail

72

Again, it cannot be shown that the addition of feedback makes the classification better in

any general sense (Figure 8). The values are, for the most part, basically identical to

those from the no-feedback tests, shifted by a few alerts to the left (Figure 9).

0.0

20.0

40.0

60.0

80.0

100.0

0 100 200 300 400

Number of Alerts

P
er

ce
n

ta
g

e

FP%
FN%

Figure 8. Limited Feedback Results: Percentage vs. CDP for FP and FN

0.0

20.0

40.0

60.0

80.0

100.0

0 100 200 300 400

Number of Alerts

P
er

ce
n

ta
g

e NF-FP%
NF-FN%
F-FP%
F-FN%

Figure 9. Percentage vs. CDP for FP and FN with (F) and without (NF) Feedback

73

5.3 Summary

This chapter discussed test cases as they related to the classification capability of

the system. Test results are discussed as they related to the testing objectives. In these

experiments, use of a partial feedback system did not appear to increase effectiveness of

classification. Certain modifications are easier to detect than others - the easiest was the

truncation modification, the most difficult is the replacement modification. Graphical

analysis is used to determine detection and false positive rates associated with various

Critical Decision Point values representing the number of alerts above which a log is

classified as an anomaly.

74

6. Conclusions and Recommendations

6.1 Introduction

This chapter summarizes the research with respect to the objectives established in

Chapter 1. The research impact and potential utility of the system are discussed. Finally,

recommendations for future work are outlined.

6.2 Research Impact

Research impact can be described in terms of how the system met the objectives stated in

Chapter 1.

Objective I: Identify and implement any operators necessary to describe temporal

relationships among relevant events

The relationship operators implemented were adequate to characterize and identify a

significant percentage of the synthetic anomalies, especially truncations. In retrospect, a

set of additional operators might have been useful to match different types of patterns.

They are discussed in Section 6.3.

Objective II: Determine an appropriate method of producing descriptors for

event sequences of varying complexity

The method of using GP to produced “relationships” linked with logical operators was a

success. Large quantities of descriptors were producible in reasonable time.

75

Objective III: Determine an appropriate method of classifying these relationships

as “normal” or “anomalous”

Use of the AIS paradigm was shown to be practical for isolating non-self detecting

antibody descriptors. The combination of this technique with feedback and construction

of the CDP curves allowed a “decision value” to be determined for a variety of different

simulated intrusions.

Objective IV: Determine a method to extract and consolidate data that may assist

human analysts in locating the point at which an anomaly occurs

Extraction of the “Difference Essences” was a simple way of locating the point(s) at

which the execution path of an application becomes anomalous. Because analysis was

not limited to a fixed-size window, a plethora of information regarding the execution path

as a whole could be compiled for post-mortem analysis. This information could assist

not only in the identification of the attack used, but in the patching of security faults.

Testing needs to be done to determine the utility of the collected information to an

analyst. Further refinements, including condensing relationships and developing a

method of visually representing these differences, would be of use.

6.3 Recommendations for Future Work

This research only dealt with a subset of the components that comprise the AIS

model. It needs to be brought more completely within the model and further validated.

Necessary alterations include running the system as truly deployed, using full feedback

76

(not just “tuning” feedback) and testing on a representative, more realistic set of self and

intrusion data. Such testing might involve setting up and instrumenting a sendmail server

or other complex application and gathering several days worth of normal and intrusion

data. An addition could easily be made to this system to allow it to behave both as a

signature detector and an anomaly detector, as follows: the fully deployed system would

begin with a full Antibody Database and an empty Signature Database. As antibodies

detect anomalies, they could be moved or copied to the Signature Database and replaced

with new antibodies.

There are many possible more dramatic extensions to this research that could

improve its utility. Several examples follow:

Real-time Analysis

Real-time analysis has the benefit of use as part of an Intrusion Response System

– a system that does not merely passively detect intrusions but actively attempts to

prevent them from occurring. In this case, once a number of antibodies (greater than the

CDP) alert, the process could be slowed or halted while a human responder is summoned

to examine the situation. Such a method would be similar to the process homeostasis

used by Somayji and Forrest [Soma00]. Real-time analysis would allow certain

intrusions to be thwarted, increasing system security. At the same time, real-time

analysis still carries with it the problems discussed in Section 3.2.1; i.e., possibility of the

attacker becoming aware of the IDS, susceptibility to DoS, etc.

77

Dynamic Instrumentation

Dynamic instrumentation addresses the more common scenario wherein one is

faced with developing a defensive system for a host running an application that does not

have publicly available source code. Dynamic instrumentation techniques allow code to

be inserted directly into the compiled executable. These methods are relatively easy to

use if the developer has a solid grasp of assembly languages. One drawback to this

method is that such insertion may actually create unexpected race conditions.

Furthermore, this method is by nature OS specific, which means that there is no single

portable system that can be widely deployed if the network is heterogeneous.

Extension of Function Set, Features Monitored

There is still a wealth of application-related data unexamined by this system; it

would be sensible to determine whether monitoring other features (resource load, time

delay between command execution, system calls) might be effective. For example,

temporal functions, such as a “happens-within [t time steps]” might assist in

identification of attacks that do not affect the execution path, but do affect the rate of

progression through the path, such as some heap-based buffer overflows.

Functions that evaluate relationship between two events may also serve some

purpose in this system. They could be used to describe sequences in a different way –

instead of basing the evaluation of a relationship on the distance from a pointer, it could

be based on distance from, for example, any event of a particular identifier. It may be

more relevant when an event occurs relative to a set of events of the same type than that it

occurs within a certain number of events of a single event. For example, the regular

78

expression (1 2* 3) can produce the log {1 2 3}. In this case, it may be more useful to

describe this log using the relationship like there-exists <event 3> after-any <events 2>,

or something similar, instead of next <event 3> or <event 3> happens-within <6> of

event[0] .

6.4 Summary

The techniques used in developing this system are shown to have utility in meeting

the stated objectives. These techniques show potential utility for application to real world

data. This work establishes a solid foundation for continued research in this area.

79

Appendix: Sample Regular Expression, Fully Enumerated

Expression 2: (a1 a2 (a9 (a10+a11+a12))* (a13 a15)* a16
Number of Strings = 480

1 2 9 10 13 15 16
1 2 9 10 13 15 13 15 16
1 2 9 10 13 15 13 15 13 15 16
1 2 9 10 13 15 13 15 13 15 13 15 16
1 2 9 11 13 15 16
1 2 9 11 13 15 13 15 16
1 2 9 11 13 15 13 15 13 15 16
1 2 9 11 13 15 13 15 13 15 13 15 16
1 2 9 12 13 15 16
1 2 9 12 13 15 13 15 16
1 2 9 12 13 15 13 15 13 15 16
1 2 9 12 13 15 13 15 13 15 13 15 16
1 2 9 10 9 10 13 15 16
1 2 9 10 9 10 13 15 13 15 16
1 2 9 10 9 10 13 15 13 15 13 15 16
1 2 9 10 9 10 13 15 13 15 13 15 13 15 16
1 2 9 10 9 11 13 15 16
1 2 9 10 9 11 13 15 13 15 16
1 2 9 10 9 11 13 15 13 15 13 15 16
1 2 9 10 9 11 13 15 13 15 13 15 13 15 16
1 2 9 10 9 12 13 15 16
1 2 9 10 9 12 13 15 13 15 16
1 2 9 10 9 12 13 15 13 15 13 15 16
1 2 9 10 9 12 13 15 13 15 13 15 13 15 16
1 2 9 11 9 10 13 15 16
1 2 9 11 9 10 13 15 13 15 16
1 2 9 11 9 10 13 15 13 15 13 15 16
1 2 9 11 9 10 13 15 13 15 13 15 13 15 16
1 2 9 11 9 11 13 15 16
1 2 9 11 9 11 13 15 13 15 16
1 2 9 11 9 11 13 15 13 15 13 15 16
1 2 9 11 9 11 13 15 13 15 13 15 13 15 16
1 2 9 11 9 12 13 15 16
1 2 9 11 9 12 13 15 13 15 16
1 2 9 11 9 12 13 15 13 15 13 15 16
1 2 9 11 9 12 13 15 13 15 13 15 13 15 16
1 2 9 12 9 10 13 15 16
1 2 9 12 9 10 13 15 13 15 16
1 2 9 12 9 10 13 15 13 15 13 15 16
1 2 9 12 9 10 13 15 13 15 13 15 13 15 16
1 2 9 12 9 11 13 15 16
1 2 9 12 9 11 13 15 13 15 16
1 2 9 12 9 11 13 15 13 15 13 15 16
1 2 9 12 9 11 13 15 13 15 13 15 13 15 16
1 2 9 12 9 12 13 15 16
1 2 9 12 9 12 13 15 13 15 16
1 2 9 12 9 12 13 15 13 15 13 15 16
1 2 9 12 9 12 13 15 13 15 13 15 13 15 16
1 2 9 10 9 10 9 10 13 15 16
1 2 9 10 9 10 9 10 13 15 13 15 16
1 2 9 10 9 10 9 10 13 15 13 15 13 15 16

1 2 9 10 9 10 9 10 13 15 13 15 13 15 13 15 16
1 2 9 10 9 10 9 11 13 15 16
1 2 9 10 9 10 9 11 13 15 13 15 16
1 2 9 10 9 10 9 11 13 15 13 15 13 15 16
1 2 9 10 9 10 9 11 13 15 13 15 13 15 13 15 16
1 2 9 10 9 10 9 12 13 15 16
1 2 9 10 9 10 9 12 13 15 13 15 16
1 2 9 10 9 10 9 12 13 15 13 15 13 15 16
1 2 9 10 9 10 9 12 13 15 13 15 13 15 13 15 16
1 2 9 10 9 11 9 10 13 15 16
1 2 9 10 9 11 9 10 13 15 13 15 16
1 2 9 10 9 11 9 10 13 15 13 15 13 15 16
1 2 9 10 9 11 9 10 13 15 13 15 13 15 13 15 16
1 2 9 10 9 11 9 11 13 15 16
1 2 9 10 9 11 9 11 13 15 13 15 16
1 2 9 10 9 11 9 11 13 15 13 15 13 15 16
1 2 9 10 9 11 9 11 13 15 13 15 13 15 13 15 16
1 2 9 10 9 11 9 12 13 15 16
1 2 9 10 9 11 9 12 13 15 13 15 16
1 2 9 10 9 11 9 12 13 15 13 15 13 15 16
1 2 9 10 9 11 9 12 13 15 13 15 13 15 13 15 16
1 2 9 10 9 12 9 10 13 15 16
1 2 9 10 9 12 9 10 13 15 13 15 16
1 2 9 10 9 12 9 10 13 15 13 15 13 15 16
1 2 9 10 9 12 9 10 13 15 13 15 13 15 13 15 16
1 2 9 10 9 12 9 11 13 15 16
1 2 9 10 9 12 9 11 13 15 13 15 16
1 2 9 10 9 12 9 11 13 15 13 15 13 15 16
1 2 9 10 9 12 9 11 13 15 13 15 13 15 13 15 16
1 2 9 10 9 12 9 12 13 15 16
1 2 9 10 9 12 9 12 13 15 13 15 16
1 2 9 10 9 12 9 12 13 15 13 15 13 15 16
1 2 9 10 9 12 9 12 13 15 13 15 13 15 13 15 16
1 2 9 11 9 10 9 10 13 15 16
1 2 9 11 9 10 9 10 13 15 13 15 16
1 2 9 11 9 10 9 10 13 15 13 15 13 15 16
1 2 9 11 9 10 9 10 13 15 13 15 13 15 13 15 16
1 2 9 11 9 10 9 11 13 15 16
1 2 9 11 9 10 9 11 13 15 13 15 16
1 2 9 11 9 10 9 11 13 15 13 15 13 15 16
1 2 9 11 9 10 9 11 13 15 13 15 13 15 13 15 16
1 2 9 11 9 10 9 12 13 15 16
1 2 9 11 9 10 9 12 13 15 13 15 16
1 2 9 11 9 10 9 12 13 15 13 15 13 15 16
1 2 9 11 9 10 9 12 13 15 13 15 13 15 13 15 16
1 2 9 11 9 11 9 10 13 15 16
1 2 9 11 9 11 9 10 13 15 13 15 16
1 2 9 11 9 11 9 10 13 15 13 15 13 15 16
1 2 9 11 9 11 9 10 13 15 13 15 13 15 13 15 16
1 2 9 11 9 11 9 11 13 15 16
1 2 9 11 9 11 9 11 13 15 13 15 16

80

1 2 9 11 9 11 9 11 13 15 13 15 13 15 16
1 2 9 11 9 11 9 11 13 15 13 15 13 15 13 15 16
1 2 9 11 9 11 9 12 13 15 16
1 2 9 11 9 11 9 12 13 15 13 15 16
1 2 9 11 9 11 9 12 13 15 13 15 13 15 16
1 2 9 11 9 11 9 12 13 15 13 15 13 15 13 15 16
1 2 9 11 9 12 9 10 13 15 16
1 2 9 11 9 12 9 10 13 15 13 15 16
1 2 9 11 9 12 9 10 13 15 13 15 13 15 16
1 2 9 11 9 12 9 10 13 15 13 15 13 15 13 15 16
1 2 9 11 9 12 9 11 13 15 16
1 2 9 11 9 12 9 11 13 15 13 15 16
1 2 9 11 9 12 9 11 13 15 13 15 13 15 16
1 2 9 11 9 12 9 11 13 15 13 15 13 15 13 15 16
1 2 9 11 9 12 9 12 13 15 16
1 2 9 11 9 12 9 12 13 15 13 15 16
1 2 9 11 9 12 9 12 13 15 13 15 13 15 16
1 2 9 11 9 12 9 12 13 15 13 15 13 15 13 15 16
1 2 9 12 9 10 9 10 13 15 16
1 2 9 12 9 10 9 10 13 15 13 15 16
1 2 9 12 9 10 9 10 13 15 13 15 13 15 16
1 2 9 12 9 10 9 10 13 15 13 15 13 15 13 15 16
1 2 9 12 9 10 9 11 13 15 16
1 2 9 12 9 10 9 11 13 15 13 15 16
1 2 9 12 9 10 9 11 13 15 13 15 13 15 16
1 2 9 12 9 10 9 11 13 15 13 15 13 15 13 15 16
1 2 9 12 9 10 9 12 13 15 16
1 2 9 12 9 10 9 12 13 15 13 15 16
1 2 9 12 9 10 9 12 13 15 13 15 13 15 16
1 2 9 12 9 10 9 12 13 15 13 15 13 15 13 15 16
1 2 9 12 9 11 9 10 13 15 16
1 2 9 12 9 11 9 10 13 15 13 15 16
1 2 9 12 9 11 9 10 13 15 13 15 13 15 16
1 2 9 12 9 11 9 10 13 15 13 15 13 15 13 15 16
1 2 9 12 9 11 9 11 13 15 16
1 2 9 12 9 11 9 11 13 15 13 15 16
1 2 9 12 9 11 9 11 13 15 13 15 13 15 16
1 2 9 12 9 11 9 11 13 15 13 15 13 15 13 15 16
1 2 9 12 9 11 9 12 13 15 16
1 2 9 12 9 11 9 12 13 15 13 15 16
1 2 9 12 9 11 9 12 13 15 13 15 13 15 16
1 2 9 12 9 11 9 12 13 15 13 15 13 15 13 15 16
1 2 9 12 9 12 9 10 13 15 16
1 2 9 12 9 12 9 10 13 15 13 15 16
1 2 9 12 9 12 9 10 13 15 13 15 13 15 16
1 2 9 12 9 12 9 10 13 15 13 15 13 15 13 15 16
1 2 9 12 9 12 9 11 13 15 16
1 2 9 12 9 12 9 11 13 15 13 15 16
1 2 9 12 9 12 9 11 13 15 13 15 13 15 16
1 2 9 12 9 12 9 11 13 15 13 15 13 15 13 15 16
1 2 9 12 9 12 9 12 13 15 16
1 2 9 12 9 12 9 12 13 15 13 15 16
1 2 9 12 9 12 9 12 13 15 13 15 13 15 16
1 2 9 12 9 12 9 12 13 15 13 15 13 15 13 15 16
1 2 9 10 9 10 9 10 9 10 13 15 16
1 2 9 10 9 10 9 10 9 10 13 15 13 15 16
1 2 9 10 9 10 9 10 9 10 13 15 13 15 13 15 16
1 2 9 10 9 10 9 10 9 10 13 15 13 15 13 15 13 15 16
1 2 9 10 9 10 9 10 9 11 13 15 16

1 2 9 10 9 10 9 10 9 11 13 15 13 15 16
1 2 9 10 9 10 9 10 9 11 13 15 13 15 13 15 16
1 2 9 10 9 10 9 10 9 11 13 15 13 15 13 15 13 15 16
1 2 9 10 9 10 9 10 9 12 13 15 16
1 2 9 10 9 10 9 10 9 12 13 15 13 15 16
1 2 9 10 9 10 9 10 9 12 13 15 13 15 13 15 16
1 2 9 10 9 10 9 10 9 12 13 15 13 15 13 15 13 15 16
1 2 9 10 9 10 9 11 9 10 13 15 16
1 2 9 10 9 10 9 11 9 10 13 15 13 15 16
1 2 9 10 9 10 9 11 9 10 13 15 13 15 13 15 16
1 2 9 10 9 10 9 11 9 10 13 15 13 15 13 15 13 15 16
1 2 9 10 9 10 9 11 9 11 13 15 16
1 2 9 10 9 10 9 11 9 11 13 15 13 15 16
1 2 9 10 9 10 9 11 9 11 13 15 13 15 13 15 16
1 2 9 10 9 10 9 11 9 11 13 15 13 15 13 15 13 15 16
1 2 9 10 9 10 9 11 9 12 13 15 16
1 2 9 10 9 10 9 11 9 12 13 15 13 15 16
1 2 9 10 9 10 9 11 9 12 13 15 13 15 13 15 16
1 2 9 10 9 10 9 11 9 12 13 15 13 15 13 15 13 15 16
1 2 9 10 9 10 9 12 9 10 13 15 16
1 2 9 10 9 10 9 12 9 10 13 15 13 15 16
1 2 9 10 9 10 9 12 9 10 13 15 13 15 13 15 16
1 2 9 10 9 10 9 12 9 10 13 15 13 15 13 15 13 15 16
1 2 9 10 9 10 9 12 9 11 13 15 16
1 2 9 10 9 10 9 12 9 11 13 15 13 15 16
1 2 9 10 9 10 9 12 9 11 13 15 13 15 13 15 16
1 2 9 10 9 10 9 12 9 11 13 15 13 15 13 15 13 15 16
1 2 9 10 9 10 9 12 9 12 13 15 16
1 2 9 10 9 10 9 12 9 12 13 15 13 15 16
1 2 9 10 9 10 9 12 9 12 13 15 13 15 13 15 16
1 2 9 10 9 10 9 12 9 12 13 15 13 15 13 15 13 15 16
1 2 9 10 9 11 9 10 9 10 13 15 16
1 2 9 10 9 11 9 10 9 10 13 15 13 15 16
1 2 9 10 9 11 9 10 9 10 13 15 13 15 13 15 16
1 2 9 10 9 11 9 10 9 10 13 15 13 15 13 15 13 15 16
1 2 9 10 9 11 9 10 9 11 13 15 16
1 2 9 10 9 11 9 10 9 11 13 15 13 15 16
1 2 9 10 9 11 9 10 9 11 13 15 13 15 13 15 16
1 2 9 10 9 11 9 10 9 11 13 15 13 15 13 15 13 15 16
1 2 9 10 9 11 9 10 9 12 13 15 16
1 2 9 10 9 11 9 10 9 12 13 15 13 15 16
1 2 9 10 9 11 9 10 9 12 13 15 13 15 13 15 16
1 2 9 10 9 11 9 10 9 12 13 15 13 15 13 15 13 15 16
1 2 9 10 9 11 9 11 9 10 13 15 16
1 2 9 10 9 11 9 11 9 10 13 15 13 15 16
1 2 9 10 9 11 9 11 9 10 13 15 13 15 13 15 16
1 2 9 10 9 11 9 11 9 10 13 15 13 15 13 15 13 15 16
1 2 9 10 9 11 9 11 9 11 13 15 16
1 2 9 10 9 11 9 11 9 11 13 15 13 15 16
1 2 9 10 9 11 9 11 9 11 13 15 13 15 13 15 16
1 2 9 10 9 11 9 11 9 11 13 15 13 15 13 15 13 15 16
1 2 9 10 9 11 9 11 9 12 13 15 16
1 2 9 10 9 11 9 11 9 12 13 15 13 15 16
1 2 9 10 9 11 9 11 9 12 13 15 13 15 13 15 16
1 2 9 10 9 11 9 11 9 12 13 15 13 15 13 15 13 15 16
1 2 9 10 9 11 9 12 9 10 13 15 16
1 2 9 10 9 11 9 12 9 10 13 15 13 15 16
1 2 9 10 9 11 9 12 9 10 13 15 13 15 13 15 16
1 2 9 10 9 11 9 12 9 10 13 15 13 15 13 15 13 15 16

81

1 2 9 10 9 11 9 12 9 11 13 15 16
1 2 9 10 9 11 9 12 9 11 13 15 13 15 16
1 2 9 10 9 11 9 12 9 11 13 15 13 15 13 15 16
1 2 9 10 9 11 9 12 9 11 13 15 13 15 13 15 13 15 16
1 2 9 10 9 11 9 12 9 12 13 15 16
1 2 9 10 9 11 9 12 9 12 13 15 13 15 16
1 2 9 10 9 11 9 12 9 12 13 15 13 15 13 15 16
1 2 9 10 9 11 9 12 9 12 13 15 13 15 13 15 13 15 16
1 2 9 10 9 12 9 10 9 10 13 15 16
1 2 9 10 9 12 9 10 9 10 13 15 13 15 16
1 2 9 10 9 12 9 10 9 10 13 15 13 15 13 15 16
1 2 9 10 9 12 9 10 9 10 13 15 13 15 13 15 13 15 16
1 2 9 10 9 12 9 10 9 11 13 15 16
1 2 9 10 9 12 9 10 9 11 13 15 13 15 16
1 2 9 10 9 12 9 10 9 11 13 15 13 15 13 15 16
1 2 9 10 9 12 9 10 9 11 13 15 13 15 13 15 13 15 16
1 2 9 10 9 12 9 10 9 12 13 15 16
1 2 9 10 9 12 9 10 9 12 13 15 13 15 16
1 2 9 10 9 12 9 10 9 12 13 15 13 15 13 15 16
1 2 9 10 9 12 9 10 9 12 13 15 13 15 13 15 13 15 16
1 2 9 10 9 12 9 11 9 10 13 15 16
1 2 9 10 9 12 9 11 9 10 13 15 13 15 16
1 2 9 10 9 12 9 11 9 10 13 15 13 15 13 15 16
1 2 9 10 9 12 9 11 9 10 13 15 13 15 13 15 13 15 16
1 2 9 10 9 12 9 11 9 11 13 15 16
1 2 9 10 9 12 9 11 9 11 13 15 13 15 16
1 2 9 10 9 12 9 11 9 11 13 15 13 15 13 15 16
1 2 9 10 9 12 9 11 9 11 13 15 13 15 13 15 13 15 16
1 2 9 10 9 12 9 11 9 12 13 15 16
1 2 9 10 9 12 9 11 9 12 13 15 13 15 16
1 2 9 10 9 12 9 11 9 12 13 15 13 15 13 15 16
1 2 9 10 9 12 9 11 9 12 13 15 13 15 13 15 13 15 16
1 2 9 10 9 12 9 12 9 10 13 15 16
1 2 9 10 9 12 9 12 9 10 13 15 13 15 16
1 2 9 10 9 12 9 12 9 10 13 15 13 15 13 15 16
1 2 9 10 9 12 9 12 9 10 13 15 13 15 13 15 13 15 16
1 2 9 10 9 12 9 12 9 11 13 15 16
1 2 9 10 9 12 9 12 9 11 13 15 13 15 16
1 2 9 10 9 12 9 12 9 11 13 15 13 15 13 15 16
1 2 9 10 9 12 9 12 9 11 13 15 13 15 13 15 13 15 16
1 2 9 10 9 12 9 12 9 12 13 15 16
1 2 9 10 9 12 9 12 9 12 13 15 13 15 16
1 2 9 10 9 12 9 12 9 12 13 15 13 15 13 15 16
1 2 9 10 9 12 9 12 9 12 13 15 13 15 13 15 13 15 16
1 2 9 11 9 10 9 10 9 10 13 15 16
1 2 9 11 9 10 9 10 9 10 13 15 13 15 16
1 2 9 11 9 10 9 10 9 10 13 15 13 15 13 15 16
1 2 9 11 9 10 9 10 9 10 13 15 13 15 13 15 13 15 16
1 2 9 11 9 10 9 10 9 11 13 15 16
1 2 9 11 9 10 9 10 9 11 13 15 13 15 16
1 2 9 11 9 10 9 10 9 11 13 15 13 15 13 15 16
1 2 9 11 9 10 9 10 9 11 13 15 13 15 13 15 13 15 16
1 2 9 11 9 10 9 10 9 12 13 15 16
1 2 9 11 9 10 9 10 9 12 13 15 13 15 16
1 2 9 11 9 10 9 10 9 12 13 15 13 15 13 15 16
1 2 9 11 9 10 9 10 9 12 13 15 13 15 13 15 13 15 16
1 2 9 11 9 10 9 11 9 10 13 15 16
1 2 9 11 9 10 9 11 9 10 13 15 13 15 16
1 2 9 11 9 10 9 11 9 10 13 15 13 15 13 15 16

1 2 9 11 9 10 9 11 9 10 13 15 13 15 13 15 13 15 16
1 2 9 11 9 10 9 11 9 11 13 15 16
1 2 9 11 9 10 9 11 9 11 13 15 13 15 16
1 2 9 11 9 10 9 11 9 11 13 15 13 15 13 15 16
1 2 9 11 9 10 9 11 9 11 13 15 13 15 13 15 13 15 16
1 2 9 11 9 10 9 11 9 12 13 15 16
1 2 9 11 9 10 9 11 9 12 13 15 13 15 16
1 2 9 11 9 10 9 11 9 12 13 15 13 15 13 15 16
1 2 9 11 9 10 9 11 9 12 13 15 13 15 13 15 13 15 16
1 2 9 11 9 10 9 12 9 10 13 15 16
1 2 9 11 9 10 9 12 9 10 13 15 13 15 16
1 2 9 11 9 10 9 12 9 10 13 15 13 15 13 15 16
1 2 9 11 9 10 9 12 9 10 13 15 13 15 13 15 13 15 16
1 2 9 11 9 10 9 12 9 11 13 15 16
1 2 9 11 9 10 9 12 9 11 13 15 13 15 16
1 2 9 11 9 10 9 12 9 11 13 15 13 15 13 15 16
1 2 9 11 9 10 9 12 9 11 13 15 13 15 13 15 13 15 16
1 2 9 11 9 10 9 12 9 12 13 15 16
1 2 9 11 9 10 9 12 9 12 13 15 13 15 16
1 2 9 11 9 10 9 12 9 12 13 15 13 15 13 15 16
1 2 9 11 9 10 9 12 9 12 13 15 13 15 13 15 13 15 16
1 2 9 11 9 11 9 10 9 10 13 15 16
1 2 9 11 9 11 9 10 9 10 13 15 13 15 16
1 2 9 11 9 11 9 10 9 10 13 15 13 15 13 15 16
1 2 9 11 9 11 9 10 9 10 13 15 13 15 13 15 13 15 16
1 2 9 11 9 11 9 10 9 11 13 15 16
1 2 9 11 9 11 9 10 9 11 13 15 13 15 16
1 2 9 11 9 11 9 10 9 11 13 15 13 15 13 15 16
1 2 9 11 9 11 9 10 9 11 13 15 13 15 13 15 13 15 16
1 2 9 11 9 11 9 10 9 12 13 15 16
1 2 9 11 9 11 9 10 9 12 13 15 13 15 16
1 2 9 11 9 11 9 10 9 12 13 15 13 15 13 15 16
1 2 9 11 9 11 9 10 9 12 13 15 13 15 13 15 13 15 16
1 2 9 11 9 11 9 11 9 10 13 15 16
1 2 9 11 9 11 9 11 9 10 13 15 13 15 16
1 2 9 11 9 11 9 11 9 10 13 15 13 15 13 15 16
1 2 9 11 9 11 9 11 9 10 13 15 13 15 13 15 13 15 16
1 2 9 11 9 11 9 11 9 11 13 15 16
1 2 9 11 9 11 9 11 9 11 13 15 13 15 16
1 2 9 11 9 11 9 11 9 11 13 15 13 15 13 15 16
1 2 9 11 9 11 9 11 9 11 13 15 13 15 13 15 13 15 16
1 2 9 11 9 11 9 11 9 12 13 15 16
1 2 9 11 9 11 9 11 9 12 13 15 13 15 16
1 2 9 11 9 11 9 11 9 12 13 15 13 15 13 15 16
1 2 9 11 9 11 9 11 9 12 13 15 13 15 13 15 13 15 16
1 2 9 11 9 11 9 12 9 10 13 15 16
1 2 9 11 9 11 9 12 9 10 13 15 13 15 16
1 2 9 11 9 11 9 12 9 10 13 15 13 15 13 15 16
1 2 9 11 9 11 9 12 9 10 13 15 13 15 13 15 13 15 16
1 2 9 11 9 11 9 12 9 11 13 15 16
1 2 9 11 9 11 9 12 9 11 13 15 13 15 16
1 2 9 11 9 11 9 12 9 11 13 15 13 15 13 15 16
1 2 9 11 9 11 9 12 9 11 13 15 13 15 13 15 13 15 16
1 2 9 11 9 11 9 12 9 12 13 15 16
1 2 9 11 9 11 9 12 9 12 13 15 13 15 16
1 2 9 11 9 11 9 12 9 12 13 15 13 15 13 15 16
1 2 9 11 9 11 9 12 9 12 13 15 13 15 13 15 13 15 16
1 2 9 11 9 12 9 10 9 10 13 15 16
1 2 9 11 9 12 9 10 9 10 13 15 13 15 16

82

1 2 9 11 9 12 9 10 9 10 13 15 13 15 13 15 16
1 2 9 11 9 12 9 10 9 10 13 15 13 15 13 15 13 15 16
1 2 9 11 9 12 9 10 9 11 13 15 16
1 2 9 11 9 12 9 10 9 11 13 15 13 15 16
1 2 9 11 9 12 9 10 9 11 13 15 13 15 13 15 16
1 2 9 11 9 12 9 10 9 11 13 15 13 15 13 15 13 15 16
1 2 9 11 9 12 9 10 9 12 13 15 16
1 2 9 11 9 12 9 10 9 12 13 15 13 15 16
1 2 9 11 9 12 9 10 9 12 13 15 13 15 13 15 16
1 2 9 11 9 12 9 10 9 12 13 15 13 15 13 15 13 15 16
1 2 9 11 9 12 9 11 9 10 13 15 16
1 2 9 11 9 12 9 11 9 10 13 15 13 15 16
1 2 9 11 9 12 9 11 9 10 13 15 13 15 13 15 16
1 2 9 11 9 12 9 11 9 10 13 15 13 15 13 15 13 15 16
1 2 9 11 9 12 9 11 9 11 13 15 16
1 2 9 11 9 12 9 11 9 11 13 15 13 15 16
1 2 9 11 9 12 9 11 9 11 13 15 13 15 13 15 16
1 2 9 11 9 12 9 11 9 11 13 15 13 15 13 15 13 15 16
1 2 9 11 9 12 9 11 9 12 13 15 16
1 2 9 11 9 12 9 11 9 12 13 15 13 15 16
1 2 9 11 9 12 9 11 9 12 13 15 13 15 13 15 16
1 2 9 11 9 12 9 11 9 12 13 15 13 15 13 15 13 15 16
1 2 9 11 9 12 9 12 9 10 13 15 16
1 2 9 11 9 12 9 12 9 10 13 15 13 15 16
1 2 9 11 9 12 9 12 9 10 13 15 13 15 13 15 16
1 2 9 11 9 12 9 12 9 10 13 15 13 15 13 15 13 15 16
1 2 9 11 9 12 9 12 9 11 13 15 16
1 2 9 11 9 12 9 12 9 11 13 15 13 15 16
1 2 9 11 9 12 9 12 9 11 13 15 13 15 13 15 16
1 2 9 11 9 12 9 12 9 11 13 15 13 15 13 15 13 15 16
1 2 9 11 9 12 9 12 9 12 13 15 16
1 2 9 11 9 12 9 12 9 12 13 15 13 15 16
1 2 9 11 9 12 9 12 9 12 13 15 13 15 13 15 16
1 2 9 11 9 12 9 12 9 12 13 15 13 15 13 15 13 15 16
1 2 9 12 9 10 9 10 9 10 13 15 16
1 2 9 12 9 10 9 10 9 10 13 15 13 15 16
1 2 9 12 9 10 9 10 9 10 13 15 13 15 13 15 16
1 2 9 12 9 10 9 10 9 10 13 15 13 15 13 15 13 15 16
1 2 9 12 9 10 9 10 9 11 13 15 16
1 2 9 12 9 10 9 10 9 11 13 15 13 15 16
1 2 9 12 9 10 9 10 9 11 13 15 13 15 13 15 16
1 2 9 12 9 10 9 10 9 11 13 15 13 15 13 15 13 15 16
1 2 9 12 9 10 9 10 9 12 13 15 16
1 2 9 12 9 10 9 10 9 12 13 15 13 15 16
1 2 9 12 9 10 9 10 9 12 13 15 13 15 13 15 16
1 2 9 12 9 10 9 10 9 12 13 15 13 15 13 15 13 15 16
1 2 9 12 9 10 9 11 9 10 13 15 16
1 2 9 12 9 10 9 11 9 10 13 15 13 15 16
1 2 9 12 9 10 9 11 9 10 13 15 13 15 13 15 16
1 2 9 12 9 10 9 11 9 10 13 15 13 15 13 15 13 15 16
1 2 9 12 9 10 9 11 9 11 13 15 16
1 2 9 12 9 10 9 11 9 11 13 15 13 15 16
1 2 9 12 9 10 9 11 9 11 13 15 13 15 13 15 16
1 2 9 12 9 10 9 11 9 11 13 15 13 15 13 15 13 15 16
1 2 9 12 9 10 9 11 9 12 13 15 16
1 2 9 12 9 10 9 11 9 12 13 15 13 15 16
1 2 9 12 9 10 9 11 9 12 13 15 13 15 13 15 16
1 2 9 12 9 10 9 11 9 12 13 15 13 15 13 15 13 15 16
1 2 9 12 9 10 9 12 9 10 13 15 16

1 2 9 12 9 10 9 12 9 10 13 15 13 15 16
1 2 9 12 9 10 9 12 9 10 13 15 13 15 13 15 16
1 2 9 12 9 10 9 12 9 10 13 15 13 15 13 15 13 15 16
1 2 9 12 9 10 9 12 9 11 13 15 16
1 2 9 12 9 10 9 12 9 11 13 15 13 15 16
1 2 9 12 9 10 9 12 9 11 13 15 13 15 13 15 16
1 2 9 12 9 10 9 12 9 11 13 15 13 15 13 15 13 15 16
1 2 9 12 9 10 9 12 9 12 13 15 16
1 2 9 12 9 10 9 12 9 12 13 15 13 15 16
1 2 9 12 9 10 9 12 9 12 13 15 13 15 13 15 16
1 2 9 12 9 10 9 12 9 12 13 15 13 15 13 15 13 15 16
1 2 9 12 9 11 9 10 9 10 13 15 16
1 2 9 12 9 11 9 10 9 10 13 15 13 15 16
1 2 9 12 9 11 9 10 9 10 13 15 13 15 13 15 16
1 2 9 12 9 11 9 10 9 10 13 15 13 15 13 15 13 15 16
1 2 9 12 9 11 9 10 9 11 13 15 16
1 2 9 12 9 11 9 10 9 11 13 15 13 15 16
1 2 9 12 9 11 9 10 9 11 13 15 13 15 13 15 16
1 2 9 12 9 11 9 10 9 11 13 15 13 15 13 15 13 15 16
1 2 9 12 9 11 9 10 9 12 13 15 16
1 2 9 12 9 11 9 10 9 12 13 15 13 15 16
1 2 9 12 9 11 9 10 9 12 13 15 13 15 13 15 16
1 2 9 12 9 11 9 10 9 12 13 15 13 15 13 15 13 15 16
1 2 9 12 9 11 9 11 9 10 13 15 16
1 2 9 12 9 11 9 11 9 10 13 15 13 15 16
1 2 9 12 9 11 9 11 9 10 13 15 13 15 13 15 16
1 2 9 12 9 11 9 11 9 10 13 15 13 15 13 15 13 15 16
1 2 9 12 9 11 9 11 9 11 13 15 16
1 2 9 12 9 11 9 11 9 11 13 15 13 15 16
1 2 9 12 9 11 9 11 9 11 13 15 13 15 13 15 16
1 2 9 12 9 11 9 11 9 11 13 15 13 15 13 15 13 15 16
1 2 9 12 9 11 9 11 9 12 13 15 16
1 2 9 12 9 11 9 11 9 12 13 15 13 15 16
1 2 9 12 9 11 9 11 9 12 13 15 13 15 13 15 16
1 2 9 12 9 11 9 11 9 12 13 15 13 15 13 15 13 15 16
1 2 9 12 9 11 9 12 9 10 13 15 16
1 2 9 12 9 11 9 12 9 10 13 15 13 15 16
1 2 9 12 9 11 9 12 9 10 13 15 13 15 13 15 16
1 2 9 12 9 11 9 12 9 10 13 15 13 15 13 15 13 15 16
1 2 9 12 9 11 9 12 9 11 13 15 16
1 2 9 12 9 11 9 12 9 11 13 15 13 15 16
1 2 9 12 9 11 9 12 9 11 13 15 13 15 13 15 16
1 2 9 12 9 11 9 12 9 11 13 15 13 15 13 15 13 15 16
1 2 9 12 9 11 9 12 9 12 13 15 16
1 2 9 12 9 11 9 12 9 12 13 15 13 15 16
1 2 9 12 9 11 9 12 9 12 13 15 13 15 13 15 16
1 2 9 12 9 11 9 12 9 12 13 15 13 15 13 15 13 15 16
1 2 9 12 9 12 9 10 9 10 13 15 16
1 2 9 12 9 12 9 10 9 10 13 15 13 15 16
1 2 9 12 9 12 9 10 9 10 13 15 13 15 13 15 16
1 2 9 12 9 12 9 10 9 10 13 15 13 15 13 15 13 15 16
1 2 9 12 9 12 9 10 9 11 13 15 16
1 2 9 12 9 12 9 10 9 11 13 15 13 15 16
1 2 9 12 9 12 9 10 9 11 13 15 13 15 13 15 16
1 2 9 12 9 12 9 10 9 11 13 15 13 15 13 15 13 15 16
1 2 9 12 9 12 9 10 9 12 13 15 16
1 2 9 12 9 12 9 10 9 12 13 15 13 15 16
1 2 9 12 9 12 9 10 9 12 13 15 13 15 13 15 16
1 2 9 12 9 12 9 10 9 12 13 15 13 15 13 15 13 15 16

83

1 2 9 12 9 12 9 11 9 10 13 15 16
1 2 9 12 9 12 9 11 9 10 13 15 13 15 16
1 2 9 12 9 12 9 11 9 10 13 15 13 15 13 15 16
1 2 9 12 9 12 9 11 9 10 13 15 13 15 13 15 13 15 16
1 2 9 12 9 12 9 11 9 11 13 15 16
1 2 9 12 9 12 9 11 9 11 13 15 13 15 16
1 2 9 12 9 12 9 11 9 11 13 15 13 15 13 15 16
1 2 9 12 9 12 9 11 9 11 13 15 13 15 13 15 13 15 16
1 2 9 12 9 12 9 11 9 12 13 15 16
1 2 9 12 9 12 9 11 9 12 13 15 13 15 16
1 2 9 12 9 12 9 11 9 12 13 15 13 15 13 15 16
1 2 9 12 9 12 9 11 9 12 13 15 13 15 13 15 13 15 16

1 2 9 12 9 12 9 12 9 10 13 15 16
1 2 9 12 9 12 9 12 9 10 13 15 13 15 16
1 2 9 12 9 12 9 12 9 10 13 15 13 15 13 15 16
1 2 9 12 9 12 9 12 9 10 13 15 13 15 13 15 13 15 16
1 2 9 12 9 12 9 12 9 11 13 15 16
1 2 9 12 9 12 9 12 9 11 13 15 13 15 16
1 2 9 12 9 12 9 12 9 11 13 15 13 15 13 15 16
1 2 9 12 9 12 9 12 9 11 13 15 13 15 13 15 13 15 16
1 2 9 12 9 12 9 12 9 12 13 15 16
1 2 9 12 9 12 9 12 9 12 13 15 13 15 16
1 2 9 12 9 12 9 12 9 12 13 15 13 15 13 15 16
1 2 9 12 9 12 9 12 9 12 13 15 13 15 13 15 13 15 16

84

BIBLIOGRAPHY

 [Asla96] Aslam, T., I. Krsul and E. Spafford. “Use of a Taxonomy of Security Faults.”

Proceedings of the 19th NIST-NCSC National Information Systems Security
Conference. 1996. http://citeseer.nj.nec.com/aslam96use.html.

[Bish96] Bishop, M. and M. Dilger. Checking for Race Conditions in File Accesses.
Technical Report CSE-95-10, University of California at Davis. 1996.

[Cros95a] Crosbie and Spafford. "Applying Genetic Programming to Intrusion Detection."
AAAI Symposium on Genetic Programming. 1995.

[Cros95b] Crosbie, Mark and Gene Spafford. “Defending a Computer System using
Autonomous Agents,” 1995. http://citeseer.nj.nec.com/crosbie96defending.html.

[Cros95c] Crosbie and Spafford. “Active Defense of a Computer System using
Autonomous Agents,” 1995. http://citeseer.nj.nec.com/138521.html.

[Dasg98] Dasgupta, D., editor. Artificial Immune Systems and their Applications. Berlin,
Springer-Verlag, 1998.

[Davi94] Davis, M.D., R. Sigal and E.J. Weyuker. Computability, Complexity, and
Languages: Fundamentals of Computer Science. Morgan Kaufmann Publishers,
San Francisco, CA. 1994.

[Denn87] Denning, D. “An intrusion-detection model.” IEEE Transactions on Software
Engineering. 1987.

[Doyl01a] Doyle, Jon, Isaac Kohane, William Long, Howard Shrobe, and Peter Szolovits.
“Agile Monitoring for Cyber Defense,” 2001. Available at
http://citeseer.nj.nec.com/doyle01agile.html.

[Doyl01b] Doyle, Jon, Isaac Kohane, William Long, Howard Shrobe, and Peter Szolovits.
“Event Recognition Beyond Signature and Anomaly,” 2001. Available at
http://citeseer.nj.nec.com/doyle01event.html.

[Ent01] Entercept Security Technologies. Press Release: “Entercept Awarded Patent for
Advanced Buffer Overflow Protection.” Press Release Available at
http://www.entercept.com/news/uspr/12-10-01.asp.

[Fan01] Fan, W., W. Lee, M. Miller, S.J. Stolfo, P.K. Chan. “Using Artificial Anomalies
to Detect Known and Unknown Network Intrusions.” To appear in Knowledge
and Information Systems, Springer. Available at
http://www.cs.fit.edu/~pkc/papers/icdm01.pdf.

85

[Foge95] Fogel, D.B. “Phenotypes, Genotypes, and Operators in Evolutionary
Computation.” Proceedings of the 1995 IEEE Inernational Conference on
Evolutionary Computation (ICEC’95). IEEE Press, New York, NY. 1995.

[Forr94] Forrest, S., et al. “Self-Nonself Discrimination in a Computer.” Proceedings of
1994 Symposium on Research in Security and Privacy. 1994.

[Forr96] Forrest, S., et al. “A Sense of Self for UNIX Processes.” Proceedings of 1996
Symposium on Research in Security and Privacy. 1996.

[Forr97] Forrest, S., S. Hofmeyr, and A. Somayaji. “Computer Immunology.”
Communications of the ACM , 40 (10):88-96. 1997. Available at
http://citeseer.nj.nec.com/forrest96computer.html.

[Guns00] Gunsch, Gregg H. “What is Intrusion Detection?” CSCE 525: Introduction to
Information Warfare Winter 2002 class CD, 2002.

[Harm00] Harmer, P. A Distributed Agent Architecture for a Computer Virus Immune
System. MS Thesis, AFIT/GCE/ENG/00M-02, Graduate School of Engineering
and Management, Air Force Institute of Technology (AU), Wright-Patterson
AFB, OH. 2000.

[Heit00] Heitkotter, J. and D. Beasley. The Hitch-Hiker’s Guide to Evolutionary
Computation: A list of Frquently Asked Questions (FAQ), Issue 8.2. 2000.
Available from ftp://rtfm.mit.edu/pub/usenet/news.

[Head90] Heady R., G. Luger, A. Maccabe, and M. Servilla . “The Architecture of a
Network-level Intrusion Detection System,” Technical Report, CS90-20. Dept.
of Computer Science, University of New Mexico. 1990.

[Hofm98] Hofmeyr, S., et al. “Intrusion Detection Using a Sequence of System Calls.”
Journal of Computer Security, 6. 1998.

[Koza92] Koza, J.R. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. The MIT Press. 1992.

[Koza94] Koza, J.R. Genetic Programming II: Automatic Discovery of Reusable
Programs. The MIT Press. 1994.

[Kunz93] Kunz, Z. and D. Fogel. “Event Abstraction”, Springer-Verlag, Berlin, Germany.
2002.

[Mich02] Michaelwizc, Z. and D. Fogel. How to Solve It: Modern Heuristics, Springer-
Verlag, Berlin, Germany. 2002.

[NSTI94] National Security Telecommunications and Information Systems Security.
“NSTISSI No. 4011: National Training Standard for Information Systems
Security (INFOSEC) Professionals.” 1994.

86

[Nune00] Nunes de Castro, Leandro and Fernando Jose Von Zuben. “Artificial Immune
Systems: Part II – A Survey of Applications,” Technical Report DCA-RT 02/00,
2000. ftp://ftp.dca.fee.unicamp.br/pub/docs/vonzuben/lnunes/rtdca0200.pdf

[Scam01] Scambray, J., S. McClure, G. Kurtz. Hacking Exposed: Network Security Secrets
& Solutions, Second Edition. Osbourne/McGraw-Hill, Berkeley, CA. 2001.

[Soma00] Somayaji, A., S. Forrest. “Automated Response Using System-Call Delays.”
Proceedings of the USENIX Security Symposium (2000). Available at
www.usenix.org/publication/library/proceedings/sec2000/somayagi.html. 2000.

 [Will01] Williams, P.D., K.P. Anchor, J.L. Bebo, G.H. Gunsch, and G.L. Lamont. CDIS:
Towards a Computer Immune System for Detecting Network Intrusions.
Proceedings of the 4th International Symposium on Recent Advances in Intrusion
Detection (RAID) 2001. Springer-Verlag. Oct 2001.

[Zamb01] Zamboni, Diego. Using Internal Sensors for Intrusion Detection. Center for
Education and Research in Information Assurance and Security (CERIAS)
Technical Report 2001-42, Purdue University. August 2001.

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
25-03-2003

2. REPORT TYPE
Master’s Thesis

3. DATES COVERED (From – To)
Aug 2001 – Mar 2003

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE
USING SEQUENCE ANALYSIS TO PERFORM APPLICATION-BASED
ANOMALY DETECTION WITHIN AN ARTIFICIAL IMMUNE SYSTEM
FRAMEWORK

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

O’Brien, Larissa A., 1 Lt, USAF

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Way, Building 640
 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GCS/ENG/03-15

10. SPONSOR/MONITOR’S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Office of Scientific Research (AFOSR)
Attn: Dr. Robert Herklotz
4015 Wilson Boulevard, Room 713 DSN: 426-6565
Arlington, VA 22203-1954 e-mail: robert.herklotz@afosr.af.mil

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The Air Force and other Department of Defense (DoD) computer systems typically rely on traditional signature-based network IDSs to detect
various types of attempted or successful attacks. Signature-based methods are limited to detecting known attacks or similar variants; anomaly-based
systems, by contrast, alert on behaviors previously unseen. The development of an effective anomaly-detecting, application-based IDS would
increase the Air Force’s ability to ward off attacks that are not detected by signature-based network IDSs, thus strengthening the layered defenses
necessary to acquire and maintain safe, secure communication capability.
This system follows the Artificial Immune System (AIS) framework, which relies on a sense of “self,” or normal system states to determine
potentially dangerous abnormalities (“non-self”). A novel method for anomaly detection is introduced in which “self” is defined by sequences of
events that define an application’s execution path. A set of antibodies that act as sequence “detectors” are developed and used to attempt to identify
modified data within a synthetic test set.

15. SUBJECT TERMS
Computer security, Intrusion detection, Immunology, Instrumentation, Data mining, Antibodies, Stochastic processes

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Dr. Gregg H. Gunsch (ENG)

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

96
19b. TELEPHONE NUMBER (Include area code)
(937) 255-6565, ext 4281; e-mail: Gregg.Gunsch@afit.edu

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

